Issues for stellarator divertors

J.D. Lore
What are the requirements of a plasma facing component system?

1. Power removal
2. Particle handling
3. Core compatibility
4. Acceptable material lifetime
5. Maintainability
Why divertors?

1. Power removal
 - Modify downstream via parallel transport
 - Volumetric power loss
 - Detachment

2. Particle handling
 - Closure increases n0 pressure, facilitate pumping

3. Core compatibility
 - Separate impurity source from main plasma
 - H-mode access

4. Acceptable material lifetime
 - Reduce T, Γ to mitigate sputtering, erosion

5. Maintainability

6. Downside: Geometry largely fixed by above, uses a lot of volume \Rightarrow $$
Why divertors?

1. Power removal
 - Modify downstream via parallel transport
 - Volumetric power loss
 - Detachment

2. Particle handling
 - Closure increases n0 pressure, facilitate pumping

3. Core compatibility
 - Separate impurity source from main plasma
 - H-mode access

4. Acceptable material lifetime
 - Reduce T, Γ to mitigate sputtering, erosion

5. Maintainability

6. Downside: Geometry largely fixed by above, uses a lot of volume → $$
Why divertors?

1. Power removal
 - Modify downstream via parallel transport
 - Volumetric power loss
 - Detachment

2. Particle handling
 - Closure increases n0 pressure, facilitate pumping

3. Core compatibility
 - Separate impurity source from main plasma
 - H-mode access

4. Acceptable material lifetime
 - Reduce T, \(\Gamma \) to mitigate sputtering, erosion

5. Maintainability

6. Downside: Geometry largely fixed by above, uses a lot of volume \(\rightarrow \$\$ \)
Why divertors?

1. Power removal
 - Modify downstream via parallel transport
 - Volumetric power loss
 - Detachment

2. Particle handling
 - Closure increases n0 pressure, facilitate pumping

3. Core compatibility
 - Separate impurity source from main plasma
 - H-mode access

4. Acceptable material lifetime
 - Reduce T, Γ to mitigate sputtering, erosion

5. Maintainability

6. Downside: Geometry largely fixed by above, uses a lot of volume $\Rightarrow \$$
Stellarator divertor systems

- Helical divertor: LHD
 - Continuous divertor between helical coils

- Island divertor: W7-AS/X
 - Control edge resonance and intersect islands with PFCs.

- Intercept ordering of flux bundles for non-resonant boundary: NCSX, HSX
 - Patterns determined by "l" of configuration. Not sensitive to edge transform

- Compared to tokamaks
 - Components are toroidally and poloidally discrete
 - Boundary between closed and open field lines in tokamak is not stochastic
Advantages of 3D divertors

• Stellarators have ‘natural divertors’
• Long connection length
• Possibly take advantage of multiple nulls
 – May have significant poloidal asymmetry if transport is ballooning
• Flexibility in configuration space to optimize divertor along with magnetics
 – Including pulling flux to locations between coils with significant expansion, alphas to specialized targets
• Possible to operate without ELMs?
• High density operation \rightarrow better divertor conditions
• Possible that power channel width scaling is better in 3D systems? Or optimize to increase heat flux width
• Momentum loss makes detachment easier?
 – Detachment more stable than tokamak? Can get T_e low enough?
Issues for 3D divertors

- Island divertor may require active control
 - Sensitivity to bootstrap current?
 - Find window in shear? Low shear: risk of core islands, high shear: small edge islands

- Neoclassical impurity accumulation

- Access to high recycling regime
 - Required for He pumping?

- Alpha losses, fast ion orbits reaching ‘behind’ components

- Stochasticity in transition from closed to open field lines
 - Switch from ion orbit loss to electron streaming, can’t maintain strong E gradient for H-mode?
Issues for 3D divertors

- Island divertor may require active control
 - Sensitivity to bootstrap current?
 - Find window in shear? Low shear: risk of core islands, high shear: small edge islands

- Neoclassical impurity accumulation

- Access to high recycling regime
 - Required for He pumping?

- Alpha losses, fast ion orbits reaching ‘behind’ components

- Stochasticity in transition from closed to open field lines
 - Switch from ion orbit loss to electron streaming, can’t maintain strong E gradient for H-mode?

\[
\Gamma_a = -D_{11}^a n_a \left(\frac{n_a'}{n_a} - q_a E_r \right) + \left[\frac{D_{21}^a}{D_{11}^a} - \frac{3}{2} \right] \frac{T_a'}{T_a}
\]

\[
\Gamma_I = -D_{11}^I n_I \left\{ \frac{n_I'}{n_I} + \left[\frac{D_{21}^I}{D_{11}^I} - \frac{3}{2} \right] \frac{T_I'}{T_I} - \frac{q_I}{q_i} \left(\frac{n_i'}{n_i} + \left[\frac{D_{21}^I}{D_{11}^I} - \frac{3}{2} \right] \frac{T_i'}{T_i} \right) \right\}
\]

Impurity accumulation
Screening if negative

ITER size, n=1e20 m⁻³, E_r=0

- ~TJ-II
- ~HSX
- NSTX
- RMP
- Tok. Err
- ITER
Issues for 3D divertors

- Island divertor may require active control
 - Sensitivity to bootstrap current?
 - Find window in shear? Low shear: risk of core islands, high shear: small edge islands

- Neoclassical impurity accumulation

- Access to high recycling regime
 - Required for He pumping?

- Alpha losses, fast ion orbits reaching ‘behind’ components

- Stochasticity in transition from closed to open field lines
 - Switch from ion orbit loss to electron streaming, can’t maintain strong E gradient for H-mode?
Issues for 3D divertors

- Erosion
 - Unmitigated tons of material are eroded per year in reactor
 - Can achieve T, n needed?
 - $T_e < 5 \text{ eV}$, $n_e > 10^{21} \text{ m}^{-3} \ast$
 - More of an issue because of toroidally and poloidally localized deposition?

- Geometry and flux patterns are complex
 - Tokamaks detach where heat flux is highest

- Stable detachment requires distance between x-point and wall
 - But increases sensitivity to B error

- Modeling gaps even larger than tokamaks

*Stangeby and Leonard, NF ’11
Research needs and opportunities

• Testing of divertor concepts
 – Basic concepts can be explored at existing facilities
 – Facility to specifically test advanced, reactor relevant divertor (W, pumping, etc).
 Innovative material concepts.

• Model validation and advancement
 – Access to high recycling regime, divertor flux widths, detachment
 – Prediction of heat flux width
 – Try to access high n_e, low T_e through modeling for reactor parameters to show erosion problem solvable

• Identify target functions for divertors and include in optimization
 – Development of robust divertor solutions with good properties
 – Tools: field line following, spiral/Hamiltonian method, EMC3-EIRENE
 – Possible to develop continuous divertor, localized to outboard side?

• Many research questions will be addressed on W7-X
 – Integrated core-edge solutions
 – Divertor flux width
 – ELMs and H-mode
 – Island divertors
Research needs and opportunities

• Analytic theory
 – Identification of divertor concepts, optimization criteria
 – Prediction of heat flux widths

• Code development and computation
 – Fast, efficient boundary models without significant grid work
 – Investigate access to high n, low T regime; high recycling
 – Investigate stability of detachment
 – Implementation of edge, divertor, target functions in optimization

• International facilities
 – Integrated core-edge solutions, divertor flux width, ELMs and H-mode, operation with island divertors

• Domestic program
 – Testing of divertor, material concepts

• Technology
 – Criteria and constraints for divertor design (max fluxes, erosion, constraints on geometry from maintainability, curvature limits, etc)
Backup slides
Modeling gaps

• Matching detachment: downstream conditions, transition
• Matching flows in SOL
• First principles prediction of cross-field transport
• Neglect blobs, main chamber fuelling
DIV3D

Peak flux: ~16MW/m²

EMC3

Peak flux: ~12MW/m²

Core Islands
- Grigull

Divertor plasma regimes: downstream parameters

Peak densities and temperatures from probe array

Region A:
- Downstream peak T_{ed} stays above 20 eV
 --- > attached spot
- Inconsistent with low T_{es}
 --- > inhomogeneous T_{es}?

Region D:
- Rollover up to detachment of n_{ed}, Γ_{pd}
 (confirmed by 2D H_a data)
- $T_{ed} > 2$ eV at detachment (from H_a/H_e)
The route to detachment (1)

Mean free paths for particle collisions are long: \(\Lambda_{\text{coll}} \propto T_u^2 / n_u \), \(T_u \sim T_e \sim T_i \), \(\Lambda_{ee} \sim \Lambda_{et} \sim \Lambda_{ii} \)

SOL collisionality: \(\nu^* = L / \Lambda_{\text{coll}} \) low

Power flow to surface largely controlled by target sheath: \(q_{\text{fs},t} = \gamma n_t c_{st} T_t + n_t c_{st} \varepsilon_{\text{pot}} \)

\(\gamma = \) sheath heat transmission coefficient
\(\varepsilon_{\text{pot}} = \) potential energy per incident ion

\(\nu^* \) rises as \(n_u \) rises, finite electron heat conductivity:

\(q_{\text{cond}} = -K_{\parallel} dT / ds_{\parallel} \), \(K_{\parallel} = K_0 T_0^{5/2} \) (note: \(\kappa_{0,e} \gg \kappa_{0,i} \))

allows parallel T gradients to develop \(\Rightarrow T_t \) decreases, but pressure balance maintained \((\nabla p_{\parallel} \sim 0) \) so that \(n_t \) rises strongly \((T_t \propto n_u^2) \)

\(\lambda_{\text{ion}} (\propto 1/n_t) \) decreases so that target recycling increases strongly \(\Rightarrow \) flux amplification

As \(T_t \downarrow \), radiation loss increases \(\Rightarrow T_t \downarrow \) further