A Phase Contrast Imaging–Interferometer system for detection of multiscale density fluctuations

E. M. Davis, J. C. Rost, M. Porkolab, A. Marinoni

MIT Plasma Science & Fusion Center, Cambridge, MA

US/EU Transport Task Force Workshop
Salem, MA, April 29, 2015

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Numbers DE-FG02-94ER54235, DE-FC02-04ER54698, and DE-FC02-99ER54512 and the U.S. Department of Energy, National Nuclear Security Administration under Award Number DE-NA0002135.
Outline

- Motivation
- Phase Contrast Imaging (PCI)
 - Fundamentals
 - Implementation on DIII-D
 - Response characteristics
- Interferometry
 - Fundamentals
 - Synthetic diagnostic study of low-\(k\) capabilities
 - Low-\(n\) MHD capabilities
- Implementation of a combined PCI–Interferometer on DIII-D
 - Layout and hardware
 - Sound wave cross-calibration
 - Potential upgrades
- Conclusions and future work
Port space and vessel windows will be limited on all future devices – combining diagnostics will be necessary.

Phase contrast imaging (PCI) and interferometry are compatible and complementary:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PCI</th>
<th>Interferometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>probe beam</td>
<td>single CO₂ beam</td>
<td>single CO₂ beam</td>
</tr>
<tr>
<td>frequency bandwidth</td>
<td>$10 \text{ kHz} < f < 2 \text{ MHz}$</td>
<td>$10 \text{ kHz} < f < 2 \text{ MHz}$</td>
</tr>
<tr>
<td>spatial bandwidth</td>
<td>$1.5 \text{ cm}^{-1} < k < 20 \text{ cm}^{-1}$</td>
<td>$0 < k < 5 \text{ cm}^{-1}$</td>
</tr>
</tbody>
</table>

All parameters for DIII-D’s currently existing PCI and recently-constructed interferometer
A combined PCI-Interferometer will allow novel turbulence and MHD investigations on DIII-D

Turbulence and Transport: combined system will “fill-out” measured k-space; important for model validation

<table>
<thead>
<tr>
<th>k</th>
<th>[cm$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Core MHD: $n \leq 8$ detected through cross correlation with DIII-D’s existing interferometer ($\Delta \phi = 45^\circ$), allowing studies of toroidal structure and influence on fast particles

Proof of principle: ITER and next-step devices will certainly have an interferometer

- Minimal system additions may also allow PCI measurements
Electron density fluctuations modulate the *phase* of electromagnetic waves propagating through a plasma

For a CO$_2$ laser beam ($\lambda_0 = 10.6 \mu$m) in a tokamak plasma, the index of refraction N is

$$N \approx 1 - \frac{1}{2} \left(\frac{\omega_{pe}}{\omega_0} \right)^2$$

Thus, a CO$_2$ beam propagating through a tokamak plasma will acquire a phase shift ϕ *relative* to vacuum

$$\phi = \frac{\omega}{c} \int (N - 1) dl = -r_e \lambda_0 \int n_e dl$$

Further, if $n_e = \bar{n}_e + \tilde{n}_e$, there will be a corresponding $\phi = \bar{\phi} + \tilde{\phi}$

$$\tilde{\phi} = -r_e \lambda_0 \int \tilde{n}_e dl$$ \hspace{1cm} (1)
Phase Contrast Imaging (PCI) transforms “invisible” phase modulations into measurable intensity variations.

Plasma fluctuations scatter a portion of the incident radiation

\[E = E_0 e^{i\phi} \]

but do not alter the resulting intensity

\[I \propto |E_0 e^{i\phi}|^2 = E_0^2 = \text{const} \]

Delaying unscattered beam by \(\pi/2 \) with a phase plate yields intensity modulations:

\[E \approx E_0 (1 + i\phi) \]

\[\Rightarrow E_{\text{PCI}} \approx E_0 (i + i\phi) \]

\[I_{\text{PCI}} \propto |E_0|^2 (1 + 2\phi) \] (2)
DIII-D’s PCI operates in any tokamak plasma and has high bandwidth, making it a model burning plasma diagnostic.

- CO$_2$ laser is a compromise between high signal and low refraction
- Large bandwidth:

\[
10 \text{ kHz} < f < 2 \text{ MHz} \\
1.5 \text{ cm}^{-1} < k_R < 20 \text{ cm}^{-1}
\]

- Resolves k_R ($\Delta k_R \approx 2 \text{ cm}^{-1}$)
- Localization of high-k_R measurements
The k_R of vertically line-integrated measurements is related to k_θ via a spatially varying geometric factor

\[
\begin{align*}
R + 2 &- R + 1 \\
R - 2 &- R - 1
\end{align*}
\]

Only fluctuations perpendicular to beam are detected.

PCI’s vertical beam and imaging configuration on DIII-D measure k_R

\[
k_R = k_\theta \csc [\alpha(R, z)]
\]

where α is angle between beam and local flux surface.
PCI’s phase plate allows fluctuation detection for $k > k_{\text{min}}$

If the scattered beam falls within the phase groove ($\Delta < d/2$), the signal is cutoff, giving

$$k_{\text{min}} = \frac{k_0d}{2f}$$

On DIII-D, an $f = 80.7''$ mirror focuses the CO$_2$ beam onto a 1 mm phase groove, providing

$$\left(k_R \right)_{\text{min}} = 1.5 \text{ cm}^{-1}$$ \hspace{1cm} (4)

Typical pedestal parameters give

$$k_\theta \rho_s \gtrsim 0.25$$

whereas ITG peaks at $k_\theta \rho_s \sim 0.2$
Low-\(k\) cutoff readily seen in experimental data from PCI

L-mode

- \(f\) [kHz]
- \(k_R\) [cm\(^{-1}\)]
- \(150 000\)
- \(t = 2.00s\)

H-mode

- \(f\) [kHz]
- \(k_R\) [cm\(^{-1}\)]
- \(150 000\)
- \(t = 2.60s\)

[Image of experimental data from PCI showing low-\(k\) cutoff]

DIII-D

NATIONAL FUSION FACILITY SAN DIEGO
The plasma leg undergoes a phase shift $\phi = \phi(r, t)$, and the resulting electric field at the detector is

$$E_{\text{det}} = E_R + E_P e^{i\phi}$$

with corresponding intensity

$$I_{\text{det}} = E_R^2 + E_P^2 + 2E_R E_P \cos \phi$$

Interferometer with magnification M measures fluctuations

$$0 \leq k \leq \frac{2\pi M}{s}$$

With $s = 1\, \text{mm}$ and $M = 0.08$

$$0 \leq k_R \leq 5.0\, \text{cm}^{-1} \quad (5)$$

complementing PCI’s k-range
Synthetic diagnostics and GYRO simulations used to model PCI and interferometer response.

Equilibrium Profiles

- n_e [1019 m$^{-3}$]
- T_i [keV]
- T_e [keV]
- r_{min} [m]

Gyro-predicted fluctuations

- \tilde{n}_e [1018 m$^{-3}$]
- t [ms]

\tilde{n}_e cross section

PCI beam $r_{\text{min}} = 0.375$ m, $\theta = 0$
Synthetic diagnostics confirm that interferometry’s low-k detection *complements* PCI’s high-k capabilities.
Toroidally spaced interferometers allow novel low-\(n\) mode studies; applications to fast particle transport

Cross-correlating signals from toroidally spaced interferometers \((\Delta \zeta = 45^\circ)\) allows low-\(n\) toroidal mode identification

\[
 n = \left(\frac{2\pi}{\Delta \zeta} \right) f_\tau = 8 f_\tau
\]

where \(f\) is the mode frequency and \(\tau\) is the time delay
IMPLEMENTATION of a combined PCI-Interferometer on DIII-D
Interferometry and PCI can be *simultaneously* implemented with minimal optical table changes and no port changes.

- Acousto-optic modulator (AOM) frequency shifts the reference beam by 27 MHz, allowing heterodyne detection.
- Two-color detection is *not* required to measure *fluctuations*.
Cooled interferometer detector increases signal-to-noise ratio (SNR), minimizing power diverted from PCI system

VIGO PVM-2TE-10.6 used as interferometer detector

- Photovoltaic operation
- 2-stage thermoelectric cooling
- $D^* \geq 10^8 \text{ cm Hz}^{1/2} / \text{W}$
- Estimated detector SNR:

$$\text{SNR} \equiv \left(\frac{\tilde{\phi}_{\text{meas}}}{\tilde{\phi}_{\text{noise}}} \right)^2 \sim 500 \quad (7)$$

Note: PCI’s LN$_2$-cooled detector ($D^* = 2 \times 10^{10} \text{ cm Hz}^{1/2} / \text{W}$) needed to detect high-$f$, high-$k$ low amplitude signals
Detector measures 27 MHz heterodyne signal that is modulated by phase variations along beam paths.

We have subsequently achieved the expected peak-to-peak signal voltage $V_{pp} \sim 150$ mV.
Analog I/Q demodulation recovers phase $\phi(t)$ from heterodyne measurement.

Phase computed as

$$\phi(t) = \tan^{-1} \left[\frac{I(t)}{Q(t)} \right]$$ (8)

Demodulator noise figure results in total-system (detector-to-digitizer) signal-to-noise ratio $\text{SNR} \geq 50$
The system response can be empirically characterized by shooting sound waves through the beam path. Using the sound wave dispersion relation $c_s = \frac{2\pi f}{k} \approx 340 \text{ m/s}$, we can determine k from an imposed frequency f.
The combined PCI-Interferometer can detect chirped (1 – 15 kHz) calibration sound waves.

Interferometer detects low-k fluctuations invisible to PCI.

The measurements are complementary.
However, the measured interferometer response differs from theoretical expectations.
Next-steps and potential upgrades to improve interferometer response and explore additional physics

- We are evaluating the effect of the following on the interferometer’s SNR:
 - Matched reference and plasma arm optical path lengths
 - Increased power on interferometer detector
 - Optimized electronics
- k-resolved measurements via interferometer detector array
 - Electron density gradient fluctuation measurements via differential interferometry
- Equilibrium and fluctuation measurements via:
 - Two-color (e.g. CO$_2$-HeNe) interferometry, or
 - Dispersion interferometry
- Radially viewing PCI–interferometer for pure k_θ detection
Conclusions

- PCI and interferometry are compatible and complementary reactor-relevant diagnostics that already inform compelling physics investigations on today’s devices.

- A combined PCI–interferometer on DIII-D will allow:
 - Multiscale \bar{n}_e measurements ($0 \leq k_R \leq 20 \text{ cm}^{-1}$)
 - Low-n MHD studies
 - Diagnostic proof-of-principle

- A combined PCI–interferometer has been constructed at DIII-D
 - Small changes to the pre-existing PCI optical table have allowed heterodyne interferometric measurements
 - Cross-calibration sound wave measurements have confirmed the system’s multiscale capabilities
 - Interferometer SNR and response are being optimized
 - Physics data expected at start of DIII-D’s 2015 campaign