Energy Transport Analyses of DIII-D High-β_p EAST-demonstration Discharge

C.K. Pan1,* G.M. Staebler2, L.L. Lao2, A. Garofalo2, X.Z. Gong1, Q. Ren1, G.Q. Li1, S.Y. Ding1, J.P. Qian1, B.N. Wan1, G.S. Xu1, W. Solomon3, O. Meneghini2, S.P. Smith2

1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
2General Atomics, P. O. Box 85608, San Diego, California 92168-5608, USA
3Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 0854300451, USA

Energy transport analyses of DIII-D high-β_p EAST-demonstration discharges have been performed by using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. TGYRO/TGLF/NEO analysis results indicate that ion energy transport is dominant by neoclassical transport and the predicted ion temperature profiles agree closely with the experimental measured profiles. For these high-β_p discharges, the electron turbulent energy transport is under-predicted by TGLF/TGYRO/NEO over the whole core plasma. The experimental ion and electron temperature profiles can be predicted with TGYRO/TGLF/NEO by empirically increasing the saturated turbulence level for high-wavenumber electron temperature gradient (ETG) driven modes used in TGLF. Both the ion and electron energy transport are largely insensitive to reductions in the $E \times B$ flow shear stabilization. The ion energy transport is still on the neoclassical level even though without the $E \times B$ flow shear stabilization effect.

Work supported by US DOE under DE-FG03-95ER543092, DE-FC02-04ER546982, DE-AC02-09CH114663, and the National Natural Science Foundation of China under Grant Nos. 111051821 and 115752461, and the National Magnetic Confinement Fusion Program of China under Contract Nos. 2014GB1060011 and 2015GB1020011.