Study of turbulence changes associated with ELM suppression by RMP in DIII-D

C. Sung1, G. Wang1, T. Rhodes1, S. Smith2, G. Staebler3, E. David4, M. Ono5, D. Eldon6, R. Groebner2, and W. Peebles1

1University of California Los Angeles, Los Angeles, California, USA
2,3General Atomics, San Diego, California, USA
4Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
5National Institute for Fusion Science, Toki, Japan
6Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

Using correlation electron cyclotron emission (CECE) measurements near the top of the H-mode pedestal (ρ ∼ 0.9 − 0.96), we investigated the changes in broadband electron temperature fluctuations (\(\tilde{T}_e\)) in low wavenumbers (\(k_{\theta}\rho_s < 0.5\)) associated with ELM suppression with resonant magnetic perturbations (RMP), and also studied the nature of the \(\tilde{T}_e\) through profile analysis and linear stability analysis using gyro-Landau fluid model (TGLF) \[1\]. In addition, the correlation between turbulence changes and heat transport is also explored via power balance analysis. We first found that \(\tilde{T}_e\) increased significantly (≥ 40%) when ELMs were suppressed by RMP, rather than being due to the increase of RMP itself. A previous study in DIII-D showed that \(\tilde{n}_e\) measured by beam emission spectroscopy (BES) increased after ELMs were suppressed by RMP, consistent with \(\tilde{T}_e\) changes. However, we found that the changes in \(\tilde{T}_e\) with ELM phase with RMP are not always consistent with the \(\tilde{n}_e\) changes, which suggests the mechanism of \(\tilde{T}_e\) changes can be different from \(\tilde{n}_e\) changes. Details of fluctuation measurements and relevant analyses will be presented.

This work is supported in part by the US DOE under DE-FG02-08ER549841, DEFC02-04ER546982, DE-FC02-95ER543093, DE-FG02-94ER540844, DEAC02-09CH114666