Abstract

The Levitated Dipole Concept (LDT) is an innovative device for the production of high quality plasma. A levitated poloidal coil is used to confine a low density plasma in a variable length tubular torus. The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Significant Stored Energy in Thermal Plasma

The level of stored energy in the plasma is a critical parameter for the performance of the device. The energy stored in the plasma is given by the formula:

\[E = \frac{1}{2} n \rho c^2 \]

where \(E \) is the energy stored in the plasma, \(n \) is the density of the plasma, \(\rho \) is the mass density of the plasma, and \(c \) is the speed of light.

Towards Higher Density Dipole Confined Plasmas

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

1 MW ICRF Transmitter (3-28 MHz)

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

University of Maryland 28 GHz Gyrotron

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Levitated Dipole Experiment (LDT) Experiment

The Levitated Dipole Experiment (LDT) is a novel device for the production of high quality plasma. The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Figure 4

Inward Particle Pinch Observed during Levitated Plasmas

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Effect of Plasma in the Levitated System

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Levitated Dipole System

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Low Frequency Fluctuations consistent with Turbulent Pinch

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Levitated Dipole Power Balance Scaling

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Figure 4

Inward Particle Pinch Observed during Levitated Plasmas

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

University of Maryland 28 GHz Gyrotron

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Levitated Dipole Experiment (LDT) Experiment

The Levitated Dipole Experiment (LDT) is a novel device for the production of high quality plasma. The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Figure 4

Inward Particle Pinch Observed during Levitated Plasmas

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

University of Maryland 28 GHz Gyrotron

The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.

Levitated Dipole Experiment (LDT) Experiment

The Levitated Dipole Experiment (LDT) is a novel device for the production of high quality plasma. The device is designed to support superconducting poloidal and toroidal fields. The device is intended to be used as a source of high quality plasma for fusion research.