Advances in measurement and modeling of the H-mode pedestal on the Alcator C-Mod tokamak

J.W. Hughes, B. LaBombard, D.A. Mossessian†, A.E. Hubbard, J.L. Terry, T. Biewer and the Alcator C-Mod Team

Plasma Science and Fusion Center, MIT

47th Annual Meeting of the Division of Plasma Physics
Denver, CO
24 October 2005

†Currently at JWM Partners, LLC

Supported by US DoE Coop. Agreement No. DE-FC02-99ER54512
Motivation: Pedestal physics a critical issue for tokamak performance

- High confinement (H-mode) associated with edge transport barriers (ETBs)
 - Localized region of steep n_e, T_e gradients give pedestal at edge \rightarrow B.C. for core profiles
 - Stiffness of core profiles leads to robust scaling of stored energy with pressure pedestal
- Physics determining pedestal structure incompletely understood
- Open questions touched on in this talk:
 - Pressure gradient limits
 - Impact of plasma operational parameters on H-mode edge transport
 - Influence of neutral fueling on density pedestal

Alcator C-Mod stored energy vs. electron pressure pedestal

Outline

• Pedestal characterization on C-Mod
• Experimental scaling studies
• Empirical diagnosis of particle transport in pedestal
• Kinetic neutral modeling
• Recent pedestal fueling experiments
• Conclusions
Edge Thomson scattering (ETS)\[^1\] mainly used for T_e, n_e characterization in pedestal region

Modified $tanh$-function

The modified $tanh$-function is fitted to H-mode pedestal data:

$$f(R) = b + \frac{\hbar}{2} \left[\tanh \left(\frac{R_0 - R}{d} \right) + 1 \right] + m(R_0 - R - d) \times H(R_0 - R - d)$$

- **Widths** Δ_T, Δ_n usually 2—6mm
- **$T_{e,PED}$** typically 200—800 eV
- **$n_{e,PED}$** can be 1—5x10^{20} m$^{-3}$
- Typically assume $T_i = T_e$, due to high collisionality
- Measurements of edge T_i from CXRS, when available, in reasonable agreement with Thomson T_e

Ion temperature: Marr, Wed. AM (KP1.17)

\[^1\] Rev. Sci. Instrum. 72, 1107 (2001)
Enhanced D_α (EDA) H-mode arrests density, impurity accumulation without large ELMs

EDA allows steady state H-mode operation by increasing particle transport through the edge, reducing impurity buildup and radiated power.

EDA associated with quasi-coherent mode (QCM), localized to pedestal region ($f\sim 100\text{kHz}$)

Line-integrated n_e

Radiated power

Edge D_α

Edge n_e fluctuation spectrum

ICRF power

Outline

• Pedestal characterization on C-Mod
• **Experimental scaling studies**
• Empirical diagnosis of particle transport in pedestal
• Kinetic neutral modeling
• Recent pedestal fueling experiments
• Conclusions
Pressure profiles exhibit a ballooning-like scaling in H-mode and L-mode

- Dominating the pressure pedestal is an I_p^2 scaling, suggesting a critical α limit
- But, edge is found stable to ideal MHD modes
- I_p^2-limit is “soft”; $|\nabla p_e|$ scales weakly with power
- Probe measurements in near SOL of ohmic plasmas \(^1\) also shows $|\nabla p_e| \sim I_p^2$

\[^1\] B. LaBombard, et al., to be published in Nucl. Fusion

Edge phase space:
LaBombard, Thurs. PM (RO3.8)
Dimensionless scaling for H-mode pressure gradient?

- Near SOL data (~2mm outside LCFS) show evidence of edge plasma state controlled by electromagnetic fluid drift turbulence[^1]
- Demonstrates apparent critical gradient behavior, with α_{MHD} determined as a function of a collisional-like parameter
- Near SOL becomes foot of pedestal in H-mode. Could similar physical mechanisms play a role in scaling of pedestal $|\nabla p_e|$?
- Pedestal data set can be recast in terms of dimensionless quantities (α_{MHD}, collisionality ν^*)
- Possible relation to QCM formation criteria[^3] should be explored

[^2]: B. LaBombard, *et al.*, to be published in *Nucl. Fusion*.
Density pedestal shows positive scalings with current, target density

- Recent extensions to pedestal scaling studies show $n_{e,\text{PED}} \propto I_P$ over nearly 4x current variation, in all types of H-mode
- $n_{e,\text{PED}}$ shows a weaker dependence on target density (available particle source) at typical C-Mod operational parameters
- Suggestive of an interplay of plasma physics and neutral fueling in determining density pedestal

Pedestal scalings: Biewer, Thursday PM (RO3.00007)
Impact of neutral source on pedestal appears to differ between tokamaks

- 1D fluid neutral modeling\(^1\) for edge fueling makes predictions for pedestal scalings
 - \(\Delta n \sim \lambda_{\text{ion}} \sim 1/n_{e,\text{PED}} \)
 - \(\nabla n \sim n_{e,\text{PED}}^2 \)

- Model assumptions:
 - Flux balance: \(\Gamma_i = -\Gamma_n \)
 - Diffusive plasma transport: \(\Gamma_i = -D_{\text{eff}} \nabla n_i \)
 - Ionization \(\rightarrow \) plasma source, neutral sink
 - Constant neutral temperature, drift velocity

- Results from puffing, pumping experiments on DIII-D consistent with model\(^2\)

- Experience on C-Mod generally different
 - Puffing into H-mode yields little density rise (more later)
 - Recall, C-mod \(n_{e,\text{PED}} \) set largely by \(I_p \)
 - Raising \(n_{e,L} \) at fixed \(I_p \) yields no systematic change in \(\Delta n \), though \(\lambda_{\text{ion}} \) drops significantly

Wider than normal density pedestal observed as I_P is made unusually low

- Vary $n_{e,\text{PED}}$ by varying I_P
- At $I_P < 600\,\text{kA}$, n_e pedestal becomes significantly wider, with ∇n_e near L-mode levels
 - Trend of Δn vs. $n_{e,\text{PED}}$ resembles more closely DIII-D results
 - *But*, width variation at a given current is still uncorrelated with total density
- Edge q changing significantly, with corresponding changes in character of QCM
 - Mode weaker at low q (high I_P)
 - Broader in ω-space at high q (low I_P)
- Both plasma transport (increasing with q) and neutral penetration characteristics ($\lambda_{\text{MFP}} \sim 1/n_e$) are expected to change over this range

Can we diagnose the relative plasma and neutral transport experimentally?
Outline

• Pedestal characterization on C-Mod
• Experimental scaling studies
• Empirical diagnosis of particle transport in pedestal
• Kinetic neutral modeling
• Recent pedestal fueling experiments
• Conclusions
Diagnosis of n_D in pedestal shows very short penetration scale length

- At low I_p (high q), highest SOL n_e, D_α observed \Rightarrow enhanced plasma transport and high recycling
- Lower $n_{e,PED}$ at low I_p:
 - broader S_{ion} profile inside pedestal region
 - Increased average neutral penetration scale length $<L_D>$

Measured $<L_D>$ less than average Δn, and much less than characteristic neutral MFPs: $\lambda_{ion}, \lambda_{CX}$

Experimentally observed particle diffusivity a strong function of I_P

- Particle transport variation in pedestals can be expressed using effective transport coefficient
- Diffusive form for transport assumed: $\Gamma_i = -D_{\text{eff}} \nabla n_i$, with $n_i = n_e$
- D_{eff} well is clearly present in the pedestal region
 - Width on the order of Δn
 - Higher D_{eff} at lower I_P, correlated with lower $n_{e,\text{PED}}$
- The dependence of pedestal density appears strongly linked to plasma transport
- What can we say about the neutral source?
Outline

• Pedestal characterization on C-Mod
• Experimental scaling studies
• Empirical diagnosis of particle transport in pedestal
• Kinetic neutral modeling
• Recent pedestal fueling experiments
• Conclusions
Neutral penetration is simulated using fully kinetic calculation

• Modeling neutrals in a 1D fluid manner allows for simple analytic scalings of pedestal with neutral source
• Kinetic solution allows for more sophisticated treatment
 – Neutral drift velocity
 – Temperature equilibration with ions → strong coupling in high n_i regime
 – Valid when $\lambda_{MFP} > L_n$, the condition demonstrated experimentally on C-Mod
• KN1D: a kinetic solver for neutrals in slab geometry
 – Key inputs: n_e, T_e profiles, neutral pressure at wall
 – Includes ionization, CX, elastic scattering
 – Outputs molecular and atomic distribution functions → n_n, T_n, v_n
• KN1D includes no plasma physics and must be coupled with a model for the plasma transport
Modeling fixed plasma transport and variable neutral source results in a stiff n_i pedestal

- Simple model: assume fixed $T_e=T_i$, D_{eff} profile
- Find neutral source N consistent with experiment and scale it by 1.50, 1.25, 0.75 and 0.50
- $n_{e,\text{PED}}$ scales roughly as $N^{0.5}$: similar to experimental scaling with target density
- Radial position of pedestal shows little change (diamonds)
- Neutral penetration decreases with n_e rise
- Pedestal gradient scale length L_n varies little, indicating stiff n_i profiles
- Density pile-up and peaked ionization profile evident in pedestal
- Pedestal is largely self-screening to neutrals
Modeling pedestal more typical of DIII-D yields less stiff n_i profile

- Lower absolute densities \rightarrow Longer neutral penetration lengths
- Pedestal narrows slightly at higher density
- Resulting n_i gradient scale lengths exhibit more variability as neutral source is changed
- Flatter ionization profile
- Qualitatively more consistent with DIII-D experimental results at low density, and with fluid model predictions
Outline

- Pedestal characterization on C-Mod
- Experimental scaling studies
- Empirical diagnosis of particle transport in pedestal
- Kinetic neutral modeling
- Recent pedestal fueling experiments
- Conclusions
D$_2$ puffing into H-mode used to examine response of $n_{e,\text{PED}}, \nabla n_e$

- Fueling gas puffs intended to provide additional neutral source for H-mode pedestal
- D$_2$ delivered through a capillary, usually on inner wall
- Puffing affects discharge
 - Enhances vessel particle inventory
 - SOL n_e, ionization rise
 - Lower $T_{e,\text{PED}}$ within 50ms of D$_2$ entering vessel
 - Edge cooling results in total stored energy decline, suppressed radiated power
H-mode gas puff fuels pedestal more readily in low I_P, n_e discharges

- Low-I_P H-mode responds to gas puff, showing seemingly stiff n_e pedestal
 - Qualitatively like perturbed density profiles in model
 - Excessive fueling leads to H-mode termination in ~60ms
- “Standard” 0.8MA pedestal shifts outward while $n_{e,\text{PED}}$ stays constant → pedestal screening appears greater than in model
 - Plasma transport changing?
 - SOL density, flows playing a stronger role at higher I_P?

Profiles averaged over these windows

Conclusions

- Experimental studies give insight into pedestal physics
 - Ballooning-like scaling of the pressure pedestal may have links to edge turbulence rather than ideal MHD
 - Density scaling \((I_p n_e L^{1/2})\) suggestive of a \(n_e\) pedestal influenced by both plasma transport and neutral fueling
 - Empirical diagnosis of \(D_{\text{eff}}\) demonstrates strong inverse dependence on \(I_p\)
 - Large puffs produce relatively little pedestal fueling in typical H-modes
- Kinetic neutral treatment used to model neutral fueling in the pedestal
 - Simulated C-Mod pedestals with fixed plasma transport largely self-screening to neutals
 - Qualitative behavior of C-Mod \(n_e\) pedestal reproduced by model
 - Simulated DIII-D-like profiles show less profile stiffness, much as in experiment and more consistent with fluid modeling results
- Gas puffing into H-mode pedestals explicitly demonstrates screening effects
 - Screening increases at higher with \(I_p (n_e)\)
 - Resistance to H-mode gas puffing is worth thinking about; possible implications for ITER fueling
- More opportunities for understanding here: SOL opacity, flows, 2D, 3D effects etc. More complete modeling needed for the future!
Edge and pedestal studies: upcoming presentations related to C-Mod

• Wednesday morning:
 – H-mode power threshold: Rice KP1.10
 – Edge ion temperature, velocity measurements: Rowan, Bespamyatnov, McDermott, Ince-Cushman, Marr KP1.10—12, 16, 17
 – Scanning probe development: Smick KP1.19
 – Reflectometry upgrades: Dominguez KP1.23

• Thursday afternoon:
 – Pedestal scaling studies: Biewer RO3.7
 – Edge plasma phase space: LaBombard RO3.8
 – ELMs: Terry RO3.9
Questions? Reprints?

Reprint available at:

First author contact:
Jerry Hughes
Massachusetts Institute of Technology
Room NW17-172
77 Massachusetts Avenue
Cambridge, MA 02139
TEL: 617-252-1797
EMAIL: jwhughes@psfc.mit.edu