Dimensionless pedestal identity plasmas on Alcator C-Mod and JET

G P Maddison1, A E Hubbard2, J W Hughes2, I M Nunes3, M N A Beurskens1, S K Erents1, R Pasqualotto4, E Giovannozzi5, A Alfier4, M A H Kempenaars1, B Alper1, S D Pinches1, J A Snipes2, B LaBombard2, and JET-EFDA contributors*

1 EURATOM/UKAEA Fusion Association, Culham Science Centre, UK.
2 PSFC MIT, Massachusetts, USA.
3 Associação EURATOM-IST, CFN Lisbon, Portugal.
4 Consorzio RFX, EURATOM-ENEA Association, Padova, Italy.
5 Associazione EURATOM-ENEA, ENEA Centro Ricerche Frascati, Italy.

* see appendix of M L Watkins et al, Fusion Energy (Proc 21st Int Conf Chengdu, 2006) IAEA

Outline

- Motivation
- Identity scheme and plasma regimes
- Analysis of pedestal widths and sources
- Conclusions
When is (density) pedestal width related to edge sources?

- Δn_e^{ped} decreasing with n_e^{ped}

 consistent with neutral-particle penetration model on DIII-D, MAST.

M Mahdavi et al PoP 10 (2003) 3984

When is (density) pedestal width related to edge sources?

- Δn_{ped} decreasing with n_{ped} consistent with neutral-particle penetration model on DIII-D, MAST.

- Not seen in AUG, C-Mod.

- Recall if ∇p_{ped} is stability limited $\Rightarrow \Delta p_{\text{ped}}$ can influence ΔT_{ped} too.

M Mahdavi et al PoP 10 (2003) 3984

I Nunes et al NF 45 (2005) 1550

J Hughes et al PoP 9 (2002) 3019
Clarify role of sources by pedestal dimensionless identity tests

- Matching ρ_*^{ped}, v_*^{ped}, β^{ped} in tokamaks [1], [2] in principle keeps edge plasma transport the same, so other influences are emphasized, notably sources (also $f_{\text{Gw}d}$, $P_{\text{in}}/P_{\text{thresh}}$, ...).

\[
\begin{align*}
\nu_* & \propto \frac{Z_{\text{eff}}}{e} \frac{q_95}{e^{5/2}} \frac{n_e}{T_e^{2/3}} \\
\beta & \propto \frac{n_e T_e}{B_0^2} \\
\rho_* & \propto \frac{\sqrt{T_e}}{a B_0} \\
q_95 & \propto \frac{a B_0}{I_p} \\

C-\text{Mod} \quad & JET \\
n_e^{\text{ped}} (10^{19} \text{ m}^{-3}) \quad 20 \quad 1.2 \\
T_e^{\text{ped}} (\text{eV}) \quad 550 \quad 270 \\
B_0 (\text{T}) \quad 7.9 \quad 1.4 \\
I_p (\text{MA}) \quad 1.3 \quad 0.91 \\
P (\text{MW}) \quad 3.7 \quad 1.3 \\

Parameters to realise pedestal identity for size ratio $a_{\text{JET}}/a_{\text{C-Mod}} \approx 4.1$
\end{align*}
\]
C-Mod SND equilibrium accurately reproduced on JET

- Field, current, medium shape (from EFIT) well matched – but global β_N higher on JET.
ELM-free H-mode on C-Mod, stationary near-ELM-free state on JET

- Global quantities typically less well matched in best pedestal counterparts – implying different H-mode regimes?

- JET state very steady without significant ELMs – though radiation persistently high.
Pedestal profiles interpolated with modified tanh function

\[f(R) = b + \frac{h}{2} \left[\tanh \left(\frac{R_0 - R}{d} \right) + 1 \right] + m \left[R_0 - R - R \right] H \left(R_0 - R - R \right), \]

where \(H(x) = \begin{cases} 0, & x < 0 \Rightarrow R > R_0 - d \\ 1, & x \geq 0 \Rightarrow R \leq R_0 - d \end{cases} \),

height \(b + h \), width \(2d \), position \(R_0 \), inner linear slope \(-m \).

- For C-Mod, 3 neighbouring time-slices averaged in steadiest parts of H-mode phases.

- For JET, instrument resolution also modelled by convolution with top-hat function 1.5 cm wide – however, effect not typically significant.

- Profiles averaged in 0.5 s window of new High-Resolution Thomson Scattering system – see poster GP8.00089 A Alfier, R Pasqualotto et al.
C-Mod pedestal heights spanned exhibit smaller change in widths

- Range in C-Mod pedestal pressures has smaller variation of widths with $\Delta T_{\text{ped}} \approx \Delta n_{\text{ped}}$.
JET power scan matches C-Mod at upper end of density range, scaled density pedestal systematically wider on JET

- Range in C-Mod pedestal pressures has smaller variation of widths with $\Delta T_{\text{ped}} \approx \Delta n_{\text{ped}}$.
- Pedestal identity conditions achieved where JET P_{RF} scan crosses upper end of data but scaled Δn_{ped} consistently wider than C-Mod.
JET power scan matches C-Mod at upper end of density range, scaled density pedestal systematically wider on JET

- Range in C-Mod pedestal pressures has smaller variation of widths with $\Delta T_{ped} \approx \Delta n_{ped}$.
- Pedestal identity conditions achieved where JET P_{RF} scan crosses upper end of data but scaled Δn_{ped} consistently wider than C-Mod.
Best matching pair show steeper pedestal for C-Mod case

- Superimposing C-Mod, scaled JET profiles in normalised-flux space checks relative positions and widths by inspection.

- For matching heights, pedestal is steeper in C-Mod plasma.
Kinetic modelling of ionisation sources within C-Mod/JET pedestals

- Penetration of ionisation sources into pedestals modelled with 1-D kinetic code KN1D, using ionisation / Penning gauges respectively for boundary conditions ($p_{D2}^{\text{C-Mod}} \sim 100 \times p_{D2}^{\text{JET}}$).
EDGE2D-NIMBUS for JET matched upstream and at target

- upstream divertor outboard target

- 2-D modelling fitted well to HRTS upstream and outboard target probes in divertor.
Kinetic modelling of ionisation sources within C-Mod/JET pedestals

- Penetration of ionisation sources into pedestals modelled with 1-D kinetic code KN1D.

- JET results supported by independent calculation with 2-D EDGE2D-NIMBUS (M-C) code.
Kinetic modelling of ionisation sources within C-Mod/JET pedestals suggests decay-lengths in proportion to their widths

- Penetration of ionisation sources into pedestals modelled with 1-D kinetic code KN1D.
- JET results supported by independent calculation with 2-D EDGE2D-NIMBUS (M-C) code.
- Decay-lengths of ionisation sources are in almost exact proportion to pedestal thicknesses.
Normalised KN1D results suggest slightly deeper sources on JET

- Normalising KN1D sources / radial co-ordinates shows marginally deeper penetration on JET.
- Does this contribute to its broader density pedestal?
Conclusions

- Non-dimensional identity at the pedestal top has been achieved in H-modes at high field (7.9 T) on C-Mod and low field (1.4 T) on JET, encompassing a factor ≈ 4 in absolute size.

- Despite some global plasma differences, pedestal profiles are similar – but not identical. In particular, density pedestal width is proportionally somewhat wider on JET.

- 1-D (2-D) kinetic modelling of edge sources indicates neutral particles may penetrate deeper into the JET pedestal, perhaps contributing to its broadening.

- Results are therefore consistent with an intermediate condition where both plasma transport and edge sources influence pedestal formation.

- A next question would clearly be how this interplay evolves for lower $v_{\ast e}^{\text{ped}}$, higher β^{ped}.

Work conducted under the European Fusion Development Agreement / funded jointly by the UK EPSRC and by the EC under the Contract of Association between EURATOM and UKAEA / supported by US DOE award DE-FC02-99ER54512.