Edge pedestal and confinement regulation on Alcator C-Mod

51st meeting of the American Physical Society Division of Plasma Physics Atlanta, GA 2 November 2009 BI3.00004
Motivation

- Obtaining high confinement regimes ($H_{98} \sim 1$) without ELMs is a priority for ITER
 - Formation of edge pedestal ≥ 4keV needed to achieve $Q=10$ scenario
 - Simultaneous restriction on the energy release by edge localized modes (ELMs)
 - *But ELMs flush impurities, keep core radiated power controlled*
 - Must satisfy requirements of good confinement, reduced ELM activity in regimes transferrable to ITER

- Can we utilize non-ELMing regimes with good energy confinement, but some degree of particle control?
 - Examples: EDA, QH-mode, RMP-based suppression
 - Compatibility with ITER?

- By varying coupling between thermal and particle confinement, can we learn something about edge transport barrier physics?
Goal: Actively explore techniques for decoupling the particle/impurity transport from the energy transport in high-confinement tokamak discharges

- Techniques evaluated:
 - Magnetic balance optimization
 - Pedestal modification via lower hybrid waves
 - Suppression of density barrier formation via unfavorable ∇B drift operation
Is coupling of particle and thermal transport in pedestal unavoidable?

- Edge turbulence suppression typically gives rise to a strong transport barrier for both particles and energy.
- Confinement scales with plasma current: I_P regulates pressure.
- On C-Mod, density pedestal (as well as T) regulated by I_P.
 - Edge relatively thick to neutrals, sometimes approaching ITER opacity.
 - Weak neutral fueling effects.
 - Resilient n_e pedestal profiles.
- Cannot usually achieve arbitrary $<n_e>$ in H-mode.

ITER rampdown studies: Kessel, UO4.14
1. Magnetic balance optimization
Magnetic topology known to affect partition of pressure between n, T

- With single null dominant, pedestal behavior changes with ion $B_x \nabla B$ drift direction
 - **Toward active X-point** (typical)
 - Good confinement ($H_{98(y,2)}=1$) in stationary H-modes possible
 - Pedestal pressure roughly constant at fixed I_p
 - **Away from active X-point**
 - Similar pressure constraint
 - Reduced n_{ped}, increased T_{ped}, for a given L-mode target density and power
 - High confinement transiently (ELM-free)
Magnetic topology known to affect power threshold, H-mode quality

- $B \times \nabla B$ away from X-point is "unfavorable"
 - Typically gives rise to short-lived radiative ELM-free H-modes
 - High power threshold
- What is the behavior when close to double null (DN)?
 - Continuous?
 - A bifurcation?
- Is proximity to DN a potential concern for ITER?
H-modes have been studied with varied magnetic balance

- Magnetic balance characterized by the midplane radial distance between separatrices passing through lower and upper X-points: $\Delta R_{SEP} = R_{mid,XL} - R_{mid,XU}$

$\nabla \Delta R_{SEP} = -5\text{mm}$

$\nabla \Delta R_{SEP} = 0\text{mm}$

$\nabla \Delta R_{SEP} = +5\text{mm}$
Magnetic balance can be scanned while maintaining steady H-mode

- Stationary enhanced D$_{\alpha}$ (EDA) H-modes can be obtained with swept ΔR_{SEP} (LSN\rightarrowUSN and back)
- Density typically reduces as discharge becomes USN
 - Collisionality does not always drop
- Edge quasi-coherent mode (QCM) observed on fluctuation diagnostics
 - Magnetics
 - Phase contrast imaging
 - Reflectometry
- Higher β discharges exhibit small ELMs in addition to the QCM
Magnetic balance regulates edge pedestal and confinement

- Scans of magnetic balance near DN were executed
- Obtained variation of $|\Delta R_{SEP}|$ within characteristic scale lengths near edge
 - Near SOL $\lambda_p \sim 2-3\text{mm}$
 - H-mode pedestal width: 3—5mm
- Leading results
 - Natural H-mode density reduced for $\Delta R_{SEP}>0$, for sufficiently high power
 - Energy confinement time (absolute and normalized) significantly improved for $\Delta R_{SEP}<0$
- Global changes are directly related to pedestal effects
Magnetic balance regulates edge pedestal and confinement

- Scans of magnetic balance near DN were executed
- Obtained variation of $|\Delta R_{SEP}|$ within characteristic scale lengths near edge
 - Near SOL $\lambda_p \sim 2$–3mm
 - H-mode pedestal width: 3–5mm
- Leading results
 - Natural H-mode density reduced for $\Delta R_{SEP} > 0$, for sufficiently high power
 - Energy confinement time (absolute and normalized) significantly improved for $\Delta R_{SEP} < 0$
- Global changes are directly related to pedestal effects
Magnetic balance regulates edge pedestal and confinement

- Scans of magnetic balance near DN were executed
- Obtained variation of $|\Delta R_{SEP}|$ within characteristic scale lengths near edge
 - Near SOL $\lambda_p \approx 2–3$mm
 - H-mode pedestal width: 3–5mm
- Leading results
 - Natural H-mode density reduced for $\Delta R_{SEP} > 0$, for sufficiently high power
 - Energy confinement time (absolute and normalized) significantly improved for $\Delta R_{SEP} < 0$
- Global changes are directly related to pedestal effects
Magnetic balance regulates edge pedestal and confinement

- Scans of magnetic balance near DN were executed
- Obtained variation of $|\Delta R_{SEP}|$ within characteristic scale lengths near edge
 - Near SOL $\lambda_p \approx 2-3$mm
 - H-mode pedestal width: 3-5mm
- Leading results
 - Natural H-mode density reduced for $\Delta R_{SEP}>0$, for sufficiently high power
 - Energy confinement time (absolute and normalized) significantly improved for $\Delta R_{SEP}<0$
- Global changes are directly related to pedestal effects

Scale ITER ΔR_{SEP} to C-Mod: \sim-5mm
Sufficient power required to observe several effects of magnetic balance

- **Major question for ITER:** How is H-mode performance impacted for power just above threshold power?
 - As $P_{\text{net}} = P_{\text{loss}} - P_{\text{rad}}$ decreases toward threshold for H-L back-transition, *favorable energy confinement lost*
 - Pedestal density and core particle inventory increases dramatically at low P_{net}
 - Generally poorer particle and energy confinement observed in USN: correlates with higher H-mode threshold
 - General observation of pedestal “stiffness” in EDA may require minimum $P_{\text{in}}/P_{\text{th}}$

Hughes et al. BI3.00004. 51st APS-DPP, Atlanta GA, 2 Nov. 2009
Sufficient power required to observe several effects of magnetic balance

- **Major question for ITER**: How is H-mode performance impacted for power just above threshold power?
- As \(P_{\text{net}} = P_{\text{loss}} - P_{\text{rad}} \) decreases toward threshold for H-L back-transition, *favorable energy confinement lost*
- Pedestal density and core particle inventory increases dramatically at low \(P_{\text{net}} \)
- Generally poorer particle and energy confinement observed in USN: correlates with higher H-mode threshold
- General observation of pedestal “stiffness” in EDA may require minimum \(P_{\text{in}}/P_{\text{th}} \)
Sufficient power required to observe several effects of magnetic balance

- **Major question for ITER**: How is H-mode performance impacted for power just above threshold power?

- As $P_{\text{net}} = P_{\text{loss}} - P_{\text{rad}}$ decreases toward threshold for H-L back-transition, *favorable energy confinement lost*

- Pedestal density and core particle inventory increases dramatically at low P_{net}

- Generally poorer particle and energy confinement observed in USN: correlates with higher H-mode threshold

- General observation of pedestal “stiffness” in EDA may require minimum $P_{\text{in}} / P_{\text{th}}$
Cryopumping helps ameliorate the confinement degradation at low P_{net}

Upper chamber cryopump

![Graph showing \tilde{n}_e (10^20 m^-3) vs. P_{net} (MW) for unpumped and pumped conditions.](image)

![Graph showing $H_{\text{ITER-98-Y2}}$ vs. P_{net} (MW) for unpumped and pumped conditions.](image)
Results of magnetic balance studies

• Near DN operation has shown sensitivity of pedestal parameters, confinement to magnetic balance
 – Strong pedestal density reduction in slightly USN configurations, with sufficient net power
 – However, typically obtained pedestal ∇p, τ_E are lower
 – Best confinement obtained in slightly LSN, with $\Delta_{SEP} \approx 5\text{mm}$
 – Cryopumping generally improves performance

• Pedestal optimization studies have opened up new pathways for other experiments
 – Small ELM regime readily accessed in the near DN discharges with good confinement
 – Low collisionality targets for studies of density peaking (Greenwald APS07)
 – Low-density H-mode targets developed for LHCD \rightarrow an additional actuator for pedestal behavior identified
2. Pedestal modification via lower hybrid waves
EDA H-mode target demonstrates clear response to LHRF

- **Modest ICRF heating**
 - H-mode triggered in LSN
 - Shift to USN with cryopumping used to obtain minimum possible density prior to lower hybrid turn-on ($n_||=2.3$)

- **Results include:**
 - Core density reduction
 - Substantial increase in core T_e
 - Net increase in W_p
 - Effect sustained for multiple τ_E, τ_{CR}

- Data and modeling suggests relatively low current drive ($f_{CD}<4\%$) in this target
 - Likely a combination of SOL interaction and low single-pass absorption

LH in SOL: Wallace GO4.8, Wilson PP8.7
Significant modification to pedestal profiles leads to global change

- Steady state n_{PED} reduction is observed: as much as 30% in 600kA discharges
- Relaxation of n_e gradient, boost in SOL n_e
 - Beneficial for LH coupling, wave penetration into core plasma
- T_{PED} increases by up to 50%
 - Beneficial for LH damping in core
- Pressure pedestal nearly invariant, with p_{PED} constant or slightly increasing
- ~50% increase in D_{eff} at LCFS
- Pedestal collisionality drops from ~4 to ~1 in this case (v_{95})
 - EDA H-mode is maintained throughout
Time behavior shows effects propagating in from edge

- Prompt edge response observed upon application of LH
 - Changes in Ly$_{\alpha}$ emissivity profile indicate fast changes in edge/SOL profiles
 - Divertor probes measure prompt increase in particle flux
 - Changes in QCM observed
- Global density decrease continues after initial edge modification
- H-modes stay in EDA H-mode throughout LH phase
- QCM mode characteristics altered → more particle transport drive?
Dynamics of n_e pedestal relaxation can be observed over ~ 100ms
Dynamics of n_e pedestal relaxation can be observed over \sim100ms.
Dynamics of n_e pedestal relaxation can be observed over ~100ms
Dynamics of n_e pedestal relaxation can be observed over $\sim 100\text{ms}$.
Dynamics of n_e pedestal relaxation can be observed over $\sim 100\text{ms}$.
Dynamics of n_e pedestal relaxation can be observed over \sim100ms
Dynamics of n_e pedestal relaxation can be observed over \sim100ms

Hughes et al. BI3.00004. 51st APS-DPP, Atlanta GA, 2 Nov. 2009
Edge and core rotation modified on different time scales

- Natural pedestal toroidal rotation co-\(I_p\) in H-mode
- LHRF introduces a counter-\(I_p\) change in pedestal toroidal rotation
 - Precedes most other pedestal modification
 - Followed \(\sim 100\)ms later by change in central \(V_{tor}\)
- Is the pedestal rotation influencing the transport?

![Graph showing changes in plasma parameters over time](image)
Outstanding questions

• Behavior of EDA H-mode plasmas can be dramatically impacted by application of lower hybrid waves
 – Still early stages of evaluation; future experiments will explore range of effect at varied P_{LH}, $n_{||}$, plasma characteristics
• Effects, though mysterious, are generally beneficial
 – LHCD is more efficient in low density, high temperature targets
 – Application of LH directly produces an edge effect which promotes core coupling!
• Measurements, and promptness of edge effects, suggest a direct interaction of LH waves with pedestal/SOL
 – Direct effect of waves on transport?
 – Electron heating effect?
 – Direct momentum input?
• How large a role does (small, but finite) LH damping in core in sustainment of n_e gradient relaxation?
3. Suppression of density barrier formation via unfavorable ∇B drift operation
Edge transport barrier should be an energy barrier, not a particle barrier

- H-like thermal transport and L-like particle transport would give:
 - Reduced impurity confinement leading to lower core radiation
 - Reduced density gradient in pedestal provides less bootstrap current to drive peeling-ballooning modes
- Can thermal transport and particle transport in the pedestal be fully (not just partially) decoupled?
- Can we reliably prevent formation of H-mode density barrier altogether?
- Unfavorable ∇B drift operation allows us to do this
 - Improved L-mode (Ryter 1998)
 - a.k.a. “I-mode” (McDermott, APS 2008)
Improved L-mode provides high thermal, low particle confinement

- Improved L-mode consistently obtained with ion ∇B drift directed away from X-point ($P<P_{L-H}$)
- Two-phase transitions reported, with χ_{eff} decrease preceding bifurcation in edge particle confinement [Hubbard APS 2007]
- Making progress in sustainment of first phase only
 - Shaping, I_p optimization
 - Cryopumping
 - Determining H-mode power threshold

More discussion of I-mode: Marmar GO4.2
High thermal, low particle confinement readily demonstrated

- Edge profiles demonstrate the formation of temperature pedestal in I-mode
 - Experimental χ_{eff} in pedestal closer to that in H-mode than in L-mode
- Density profile L-mode like
 - n_e very high in the far SOL, even to the limiter radius
- Pedestal ν^* less than 0.1 possible at high ρ_{ped}
 - *But very few ELMs are observed*
- When triggered, ELM-free H-mode that follows has larger τ_E, transiently
 - Short-lived due to rapid impurity accumulation
Impurity confinement time confirmed to be very favorable in I-mode

Impurity confinement time measured with timed CaF$_2$ injections.

Multi-pulse laser blow off diagnostic: Howard PP8.11
A weakly coherent mode is generally observed in the sustained I-mode

- EM mode observed in turbulence diagnostics
- Features:
 - Spins-up in f at I-mode onset
 - Not extant in H-mode
 - Unlike QCM in EDA H-mode, thrives at low ν^*
 - May play a role in density and/or impurity control, as QCM has been demonstrated to do
I-mode results

• I-mode discharges are being optimized using unfavorable ion ∇B drift
 – Enhanced T_e pedestals (up to ~1keV) without strong particle barrier
 – *Density and core radiation kept low; $H_{98}\sim1$ in many cases.*
 – Low v^*, high $\nabla p \Rightarrow$ ELMs possible, although not necessary for sustained impurity transport
 – Sustainment demonstrated for several τ_E while staying slightly below L-H power threshold

• Physical mechanism for suppressing thermal transport with elevated particle flux not entirely clear
 – E_r well is significant in I-mode (1/2 of that in EDA H-mode), but does not suppress particle transport! Details of edge flows important?
 – Transport likely regulated in by a minimally coherent fluctuation (f~200kHz in lab frame)
 – Optimization so far involved *increasing H-mode power threshold* via shaping effects, running *higher I_p for improved confinement.* [Marmar GO4.2]
 – Cases also exist in favorable ∇B drift direction and are being investigated
Pedestal regulation: Looking forward

- Study of edge flows in and around the pedestal
 - Known sensitivity of SOL flows, core rotation, to magnetic topology [LaBombard APS04, Rice IAEA04]
 - Edge pressure gradients in L-mode plasmas reported to be sensitive to magnetic topology, correlated with rotation [LaBombard APS07]
 - Can decoupling of particle and thermal transport be partially linked to changes in rotation shear, relative strength of v_ϕ vs. v_θ? Already there is potential evidence for this
- Fluctuation diagnostics provide means of directly correlating fluctuation characteristics with transport
- Linear and non-linear calculations of MHD stability (including resistive)
 - What (typically) stabilizes many of these discharges to ELMs, and can the physics extrapolate to ITER?
 - What are the conditions for existence, saturation of the weakly coherent modes in EDA and I-mode. What relative levels of transport do they drive?
Overall Summary

- Studies of influence of magnetic balance on pedestal and confinement reveal a rich behavior in near DN configurations
 - With sufficient power, little or no degradation of confinement for LSN discharges approaching DN; not true for USN
 - Some of our highest H_{98} values achieved in slightly LSN, with cryopumping assist
- We have developed low-density LHCD targets, and allowed demonstration of pedestal modification with lower hybrid waves
 - Operation with relaxed n_e pedestal, invariant pressure pedestal, reduced collisionality
 - A possible actuator for modulating pedestal transport, rotation
- Unfavorable ion ∇B drift operation is being optimized for improved L-mode, or I-mode
 - USN with strong cryopumping has led to high normalized confinement, sustained for many τ_E
 - Clear experimental demonstrations of the decoupling of thermal confinement and particle/impurity confinement
Other Alcator C-Mod presentations happening this week

• Monday AM
 – BI3.5. Istvan Cziegler (next): Advanced edge fluctuation studies

• Tuesday AM
 – GO4. C-Mod Contributed Oral Session (13 talks)

• Tuesday PM
 – KI3.2. Liang Lin: Turbulent electron transport

• Wednesday PM
 – PI2.6. Dennis Whyte: Runaway e-s in mitigated disruptions
 – PP8. C-Mod Posters

• Thursday AM
 – TI3.3. Syun’ichi Shiraiwa: FEM modeling of lower hybrid waves

• Thursday PM
 – UO4. ITER Research Oral Session: Reinke, Lipschultz, Kessel