Full wave/Fokker-Planck analysis of driven current and hard X-ray emission profiles during lower hybrid experiments on Alcator C-Mod

John C. Wright
P.T. Bonoli - MIT
E.J. Valeo, C.K. Phillips - Princeton
R.W. Harvey - Comp-X

51st APS-DPP, Atlanta 2009
Motivation

- Lower hybrid generates efficient current, only option in outer plasma.
- Assess full wave effects – the computational resources needed to do this now exist.
- Electric field is needed for
 - Direct evaluation of the wave induced quasilinear diffusion accounting for phase interference,
 - rf-sheath interactions at the wall,
 - coupling to Newtonian and Monte-Carlo calculations of plasma response (diffusion, distribution fn evolution).
- Implementation of boundary conditions is well defined.
Conductivity Relation - LHRF

- LHCD Regime: $\Omega_{ci}^2 \ll \omega^2 \ll \Omega_{ce}^2$ and $\omega \geq 2\omega_{LH}; \omega_{LH} = (\Omega_{ci} \Omega_{ce})^{1/2}$
- Unmagnetized ions
- Strongly magnetized electrons $[(k_{\perp} \rho_e)^2 \ll 1]$
- Wave equation is sixth order with two propagating modes, one damped:
- Mode converted ion plasma wave is not propagative, so drop sixth order term
- Electrostatic LH “slow wave” branch
- Electromagnetic LH “fast wave” branch

$$P_4 n_{\perp}^4 + P_2 n_{\perp}^2 + P_0 = 0$$

Wave lengths are very short:

$$\lambda_{\perp} \approx (\omega/\omega_{pe}) \lambda_{\parallel} \approx 1\text{mm}$$

Predicts an accessibility criterion:

$$n_{\parallel} > n_a \equiv \frac{\omega_{pe}}{\Omega_{ce}} + S^{1/2}$$
The Spectral Gap between launched and damped $n_{||}$

- The launched waves will not damp until the phase velocity slows down to about $3v_{te}$.
- Full wave solutions include diffraction effects for this upshift of $n_{||}$.
LH Absorption physics

- Parallel refractive indexes are geometrically up-shifted as waves propagate to smaller major radius. Poloidal asymmetries can cause spread in m spectrum.

\[n_\parallel = \frac{c}{\omega} \left(\frac{m}{q} + n \right) / R \]

- Quasilinear damping occurs at \(\omega / (k_\parallel v_{te}) \sim 3 \Rightarrow \)

\[n_\parallel \approx \frac{5.7}{\sqrt{T_e[keV]}} \]

This also sets poloidal resolution.

so lower temperatures require higher \(n_\parallel \) for damping.

- Higher parallel refractive indexes are more accessible to the interior of the plasma but also damp at lower \(T_e \) =larger radii.

- Current drive scales as \(1/n_{e0} n_\parallel^2 \) and \(n_{acc} [n_{e0},B] \) sets minimum \(n_\parallel \)

\[\Rightarrow \text{operation in weak damping regime for } T_{e0} < 16 \text{keV} \]
Approaches to solution

- WKB expansions: ray tracing (GENRAY, ACCOME) and beam tracing (LHBEAM) are asymptotic approximations to the wave equation, $k \sim \nabla$ required. => can be problems with boundaries

- Full Wave (TORLH): solves Maxwell's equations directly, yields the electric field.

$$\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \left\{ \mathbf{E} + \frac{4\pi i}{\omega} \left(\mathbf{J}^P + \mathbf{J}^A \right) \right\} \quad \leftarrow \quad \mathbf{E}(\mathbf{x}) = \sum_m \mathbf{E}_m(\psi) \exp \left(i m \theta + i n \phi \right)$$

\[
\begin{align*}
\frac{dx}{dt} &= -\frac{\partial D}{\partial k} \\
\frac{dk}{dt} &= \frac{\partial D}{\partial \omega} \\
\frac{dP}{dt} &= -2\gamma P
\end{align*}
\]
TORIC Full Wave Code

- TORIC [Brambilla PPCF 1999] was developed with an FLR model for the plasma current response, J^P, for ion cyclotron waves and recently extended with an asymptotic form for lower hybrid waves.

- The antenna is modeled as a current sheet, J^A for ICRF and as the mouth of a wave guide with imposed E_\parallel for LH.

- It solves Maxwell's equations for a fixed frequency (Helmholtz problem) assuming toroidal symmetry in a mixed spectral-finite element basis. This is the physical optics solution.

\[
\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \left\{ E + \frac{4\pi i}{\omega} (J^P + J^A) \right\} \quad \leftrightarrow \quad E(x) = \sum_{m} E_m(\psi) \exp (im\theta + in\phi)
\]
A brief history of TORIC

- **FISIC (100x63)** – Brambilla NF 1986, F77, introduced basic algorithm, reduced order for $E_{||}$
- **TORIC (240x127)** – Brambilla NF 1996, F77+F90, completely restructured, full solution
- **TORIC out-of-core (480x255)** – extends problem size
- **TORIC parallel (980x1023)** – F90+MPI+ScaLaPACK, extend problem size, reduces run time
- **TORIC-LH** – Wright CiCP 2004
- + **Fokker-Planck** – Wright PoP 2009
- + **3D processor mesh** (2000x2047)
Lower Hybrid Wave Equation

\[\nabla \times \nabla \times \mathbf{E} = S \mathbf{E}_\perp + iD (\mathbf{b} \times \mathbf{E}_\perp) + PE_\parallel \mathbf{b} + \nabla_\perp (\sigma \nabla_\perp \cdot \mathbf{E}) \]

- The pressure driven term \(\sigma \) is responsible for the ion plasma LH branch. In regimes of experimental interest it is nearly vanishing.
- We drop this term and solve only for the fast and slow LH waves.
- The dielectric assumes zero FLR electrons and unmagnetized ions (non-Max effects in \(\text{Im} \ P \) retained).
- Residue gives \(\text{Im} \ P \), principle value gives \(\text{Re} \ P \sim Z_0 \).

\[P \equiv \chi_{zz} = \frac{\omega_{pe}^2}{\omega^2} \int 2\pi u_\perp du_\perp du_\parallel J_0^2 \left(\frac{k_\perp u_\perp}{\Omega e_0} \right) \frac{\partial f/\partial u_\parallel}{1 - k_\parallel u_\parallel /\omega} \]
Scaling/Convergence study

- Progression from 511->1023->2047
- Power deposition broadens at each step
- 18hrs on 2048 cpus on Franklin for $N_m = 2047$
Scaling/Convergence study

- Fully converged on Maxwellian distribution at 2047 poloidal modes.
Single pass is well converged

- Single pass damping on a Maxwellian plasma is converged
- Little interference evident

Power is very localized in single pass.

<- Spectrum is converged at 1023 modes

$n_\parallel = -2.55$, $n_0 = 7 \times 10^{19} \text{ m}^{-3}$
$T_0 = 10 \text{ keV}$, $B_0 = 4 \text{T}$
Cross-code verification/comparison

● Alcator C.
 ~10^6 mesh pts in each simulation. n_\parallel = -2.5, B_0 = 8T,
 n_e0 = 5 \times 10^{19} \text{ m}^{-3}, T_{e0} = 5 \text{ keV}.

Shiraiwa
TI3.03
Meneghini
PP8.03

COMSOL-LH

TORIC-LH

AORSA
Jaeger

Each approach as advantages and difficulties:

• CPU-hrs: COMSOL-LH 13, TORIC-LH 80, AORSA 32k (ray tracing ~ minutes)
 but wall clock times for all three are comparable given number of processors used.

• COMSOL: 2D elements can model wall and separatrix region; sparse matrix scales well [PoP Sep 2009]

• The plasma dielectric:
 - COMSOL-LH: requires real space dielectric formulation, doesn't have algebraic k_\parallel
 - TORIC-LH: FLR truncation efficient for LH
 - AORSA: All Orders treatment most general, can handle fast ion interactions
First ever 3D LH full wave simulation

\[E_z(r, \theta, \phi) = \sum_{n_{tor}} \frac{P_{LH}}{P_{abs}(n_{tor})} \frac{(P_{ant}(n_{tor}) \times P_{abs}(n_{tor}))}{\sum_{n_{tor}}(P_{ant}(n_{tor}) \times P_{abs}(n_{tor}))} e^{i(\phi n_{tor} + \angle_{ant}(n_{tor}))} E_{z,n_{tor}}(r, \theta) \]

- Sum 100 \(n_\phi \):

Alcator C
f=4.6 GHz, \(n_{||}=2.1 \)
H plasma, 8T, 600kA,
5x10\(^{13}\) cm\(^{-3}\), 3.8 keV
(240,127,100)x6=10\(^7\) DoF
Model plateau \([2.5,8]_v\)\(_{th}\)
J-P. Lee with VisIt
Weak damping requires self-consistent $f(v)$ for damping

- The poloidal power spectrum shows lack of convergence at outer flux surfaces,
- and magnification of unit amplitude applied field.
Simulation model is a coupled full wave and Fokker-Planck system

CQL3D (Harvey 1992 IAEA)

Bounce averaged Fokker-Planck code that solves for new distribution function from RF quasilinear flux, provides $f(v)$

TORIC-LH (Wright 2004 CPC, 2009 PoP)

Dielectric for LH uses zero FLR electrons and unmagnetized ions. Calculates the rf fields and the quasilinear flux.

• Simulations use EFIT reconstructed magnetic equilibria.

• Electron distribution functions from iteration with a Fokker-Planck code are used for dielectric – a non-linear solution.
Hard X-ray gives indirect measure of LH CD

- HXR camera measures bremsstrahlung emissions from electrons accelerated by LHCD.
- Better for simulation comparison than current profile – harder to measure, longer time response.
Non-relativistic iteration is not sufficient

- Broad plateau formation observed.
- Pitch angle scattering creates high energy tails $\sim> 500$ keV
- Synthetic HXR from CQL3D/TORICLH is narrower and weaker than experimental measurement. Total current is 300 kA vs 700 kA in experiment. What effects are missing?
Relativistic effects in dielectric

- Relativistic consistency:
 - Dql from TORIC-LH is fully relativistic,
 - CQL3D evolves the relativistic distribution function,
 - Formulation of parallel dielectric response for general relativistic non-Maxwellian retains the principle value in the form of the Maxwellian Z-fn, Im part has resonance along a hyperbolic line in u-space.

\[
\chi_{zz} = \frac{\omega_{pe}^2}{\omega^2} n_\parallel \int 2\pi u_\perp du_\perp u_\parallel J_0^2 \left(k_\perp u_\perp / \Omega_{e0} \right) \frac{\partial f}{\partial u_\parallel}
\]

\[
u_\perp^2 = (n_\parallel^2 - 1)u_\parallel^2 - 1
\]
Relativistic effects on DqI

- Inclusion of relativistic effects introduces the hyperbolic resonance condition:

\[\omega = k_{||} v_{||} \Rightarrow \omega = k_{||} \frac{u_{||}}{\gamma} \Rightarrow \]

\[(n_{||}^2 - 1) \frac{u_{||}}{c^2} - u_{\perp}^2/c^2 = 1 \]

\[
B = \sum_{m,m'} \frac{u_{||}^4}{\gamma^2 \nu_\phi(m) \nu_\phi(m')} J_0^2 \left(k_{\perp} \frac{u_{\perp}}{\Omega_e 0} \right) E_{||}(m) E_{||}^*(m') e^{i \theta(m-m')} \delta(\omega - k_{||}^{(m)} v_{||})
\]

\[
\langle B \rangle \equiv \frac{1}{\tau_b} \oint \frac{B}{v_{||}} d\ell
\]
Experimental validation

- Using the Alcator C-Mod shot #1060728011.1100. We calculate and compare the HXR spectrum with a synthetic diagnostic.
- Using the fields generated from a Maxwellian dielectric we get agreement in strength but not detailed shape profile. Code now matches experimental current magnitude.
2nd Iteration with X_{zz} relativistic

- Hollowness remains in HXR. Fields are more damped.
- Narrowness not understood.
- Adding radial pinch velocity may help fill in center $\sim 1\text{m/s}$
 - Possible non-linear interaction between toroidal modes
Current Density

- Total current is 680 kA.
Summary

- We have developed a tool that for the first time can produce self-consistent simulations of lower hybrid current drive in toroidal geometry using the full wave approach and 3D Fokker-Planck.
- Spectral broadening effects due to diffraction and poloidal coupling are included in the model.
- The full wave calculation yields the electric fields directly.
- Wave fronts are calculated properly near caustics and cutoffs. This may be important in the multi-pass damping regime.
- Improvements in algorithms and computation platforms have both been important in making 3D full wave LH possible.
- Cross code verification and experimental validation have been essential in development.
- Computations are cpu-intensive – new solver (Indireshkumar GP8.052) is 4 to 10 x faster.
- Next steps: non-linear coupling of toroidal modes, analysis of strong absorption experimental cases.
Comparison with ray tracing, weak damping

- Maxwellian damping in both cases.
- Good agreement in power deposition locations.
- In full wave, we see the field amplitudes are magnified by “cavity effect” [Q~200] from unit applied field at guide.
 - Indicates need for non-Max damping and possible edge damping.
Participants in the RF-SciDAC

P.T. Bonoli, J.C. Wright, H. Kohno, A.S. Richardson, J-P. Lee

C.K. Phillips, E. Valeo, N. Gorelenkov, H. Qin

R.W. Harvey, A.P. Smirnov, N.M. Ershov

M. Brambilla, R. Bilato

M. Choi

R. Maggiora, D. Milanesio

D. D’Ippolito, J. Myra

D. Smithe, T. Austin
CPU requirements are substantial

• Typical resolutions of 1000x1023.
• The stiffness matrix, A is block tridiagonal with the blocks being $(6 \times N_m)^2$:

$$
A = \begin{pmatrix}
D & U & 0 & 0 & 0 \\
L & D & U & 0 & 0 \\
0 & L & D & U & 0 \\
0 & 0 & L & D & U \\
0 & 0 & 0 & L & D
\end{pmatrix}
$$

• Current approach distributes 3 blocks over all processors and uses the serial Thomas algorithm.
• Existing parallel tridiagonal solvers do not distribute the blocks.
New solver has 3D decomposition

Current Solver

\[
L_i \cdot \tilde{x}_{i-1} + D_i \cdot \tilde{x}_i + R_i \cdot \tilde{x}_{i+1} = \tilde{y}_i
\]

\[
D_{i+1} = D_{i+1} - L_{i+1} \times D_i^{-1} \times R_i
\]

\[
(6N_m) \times (6N_m)
\]

New Solver

\[
A x = \begin{bmatrix}
 a_1 & b_1 \\
 c_2 & a_2 & b_2 \\
 & c_3 & a_3 & b_3 \\
 & & \ddots & \ddots & \ddots \\
 & & & b_{n-1} \\
 & & & c_n & a_n
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix} = \begin{bmatrix}
 r_1 \\
 r_2 \\
 r_3 \\
 \vdots \\
 r_n
\end{bmatrix} \equiv r.
\]

• Serial (Radial direction [i=1..N_ψ]: Thomas Algorithm)
 +

2-D Parallel (Poloidal m modes : Scalapack matrix calculation
 \((6N_m) \times (6N_m)\))

1-D Parallel (Radial direction: combination of Divide-and-Conquer
 and Odd-even cyclic reduction Algorithms) \(\rightarrow\) # P1 groups

+

2-D Parallel (Poloidal m modes : Scalapack matrix calculation)
\(\rightarrow\) #P2*P3 processors

\(=\) 3-D grid(P_tot=P1*P2*P3)
Strong scaling of old and new solvers to 16k processors

- Time shown only for solver step. Fill in step has slope ~ -1.
 2-4 x faster than Thomas solver.
- Old solver (in red) saturated because of complete domain decomposition, not communication.