Experimental and Gyrokinetic Investigations of Impurity Transport on Alcator C-Mod

N. Howard1, M. Greenwald1, J. Candy2, D.R. Ernst1, D.R. Mikkelsen3, Y. Podpaly1, T. Putterich4, M.L. Reinke1, J.E. Rice1, R.E. Waltz2, and A.E. White1

1 MIT Plasma Science and Fusion Center
Cambridge, MA 02139

2 General Atomics
San Diego, CA 92121

3 Princeton Plasma Physics Lab
Princeton, NJ 08540

4 Max Planck Institut fur Plasmaphysik
Garching, Germany

APS Division of Plasma Physics 2010
Chicago, IL
Measured Changes in Impurity Confinement May Be Explained by Turbulent Transport

- Plasma confinement increases with I_p.

- Increased impurity confinement degrades fusion performance.

- All impurity confinement scaling laws to date demonstrate an I_p dependence.
 - Alcator A, Alcator C, JET/Tore Supra, and Alcator C-Mod

- Neoclassical levels of impurity transport are insufficient for explaining experiment. [E. Marmar et al. PRL 1980, M.E. Puiatti, PoP 2006]

- New measurements of impurity transport in L-mode plasmas will be compared to global, nonlinear GYRO simulations of plasma turbulence to better understand the observed current scaling.

N. Howard APS DPP 2010
A Unique Set of Experimental Tools are Available for Studying Impurity Transport on Alcator C-Mod

- The Multi-Pulse Laser Blow-off System
 - Introduces trace amounts of non-recycling impurity
 - Effectively a delta function in time
 - CaF$_2$ was used for these experiments

- High Resolution X-ray Spectrometer
 - Measures the full, time evolving profile of Ca$^{18+}$

- STRAHL*
 - Determines impurity transport, models atomic physics, and line emission

N. Howard APS DPP 2010
An Experimental I_p Scan: Modification of q and the Turbulence Drive Term, a/L_{Te}

- $I_p = 0.6$ to 1.2 MA
- $n_e(0) \sim 1.4 \times 10^{20}$
- $T_e(0) \sim 3.0$ KeV
- $P_{ICRF} = 1$ MW

During the I_p scan, changes are observed in a/L_{Te} and q (therefore \hat{S}).
Experimental Values of D and V are Determined Using STRAHL

- The impurity transport code, STRAHL is used to simulate the coupled continuity equations.

\[\frac{\partial n_{i,z}}{\partial t} = \nabla \cdot \Gamma + Q_{i,z} \]

- The flux is assumed to be of the form:

\[\Gamma_{imp} = -D \nabla n + Vn \]

- Ionization, recombination, and line emission are modeled using data from ADAS

- Sawteeth are modeled and transport between crashes is determined.

- D and V are determined through χ^2 minimization.

N. Howard APS DPP 2010
Experimental Values of D and V are Determined Using STRAHL

- The impurity transport code, STRAHL is used to simulate the coupled continuity equations.

\[
\frac{\partial n_{i,z}}{\partial t} = \nabla \cdot \Gamma + Q_{i,z}
\]

- The flux is assumed to be of the form:

\[
\Gamma_{imp} = -D \nabla n + Vn
\]

- Ionization, recombination, and line emission are modeled using data from ADAS

- Sawteeth are modeled and transport between crashes is determined.

- D and V are determined through \(\chi^2\) minimization.

N. Howard APS DPP 2010
Experimental Values of D and V are Determined Using STRAHL

- The impurity transport code, STRAHL is used to simulate the coupled continuity equations.

\[
\frac{\partial n_{i,z}}{\partial t} = \nabla \cdot \Gamma + Q_{i,z}
\]

- The flux is assumed to be of the form:

\[
\Gamma_{\text{imp}} = -D \nabla n + V n
\]

- Ionization, recombination, and line emission are modeled using data from ADAS
- Sawteeth are modeled and transport between crashes is determined.
- D and V are determined through \(\chi^2 \) minimization.

N. Howard APS DPP 2010
Experimental Values of D and V are Determined Using STRAHL

- The impurity transport code, STRAHL is used to simulate the coupled continuity equations.

\[
\frac{\partial n_{i,z}}{\partial t} = \nabla \cdot \Gamma + Q_{i,z}
\]

- The flux is assumed to be of the form:

\[
\Gamma_{\text{imp}} = -D \nabla n + V n
\]

- Ionization, recombination, and line emission are modeled using data from ADAS

- Sawteeth are modeled and transport between crashes is determined.

- D and V are determined through χ^2 minimization.

N. Howard APS DPP 2010
Where Outside of Error bars, the Magnitude of D and V Decrease with I_p

- Error bars are generated by 50 STRAHL runs with variations of the background profiles.

- In the region $r/a \sim [.3, .5]$ a significant decrease in the inward velocity is observed with increasing current.
Where Outside of Error bars, the Magnitude of D and V Decrease with I_p.

- Error bars are generated by 50 STRAHL runs with variations of the background profiles.

- In the region $r/a \sim [0.3, 0.5]$ a significant decrease in the inward velocity is observed with increasing current.
GYRO Simulations Can Model the Effects of \(q \) and \(a/L_{Te} \) Individually

- A global, nonlinear GYRO simulation of the reference case (.8 MA in the \(I_p \) scan) was performed

- \(r/a \sim [.3 \rightarrow .5] \)
- \(k_\theta \rho_s \sim [0 \rightarrow 1.25] \)
- 16 toroidal modes
- kinetic electrons
- small amounts of impurities (.001 \(n_e \))
- no ExB effects

- Ti profiles were unavailable. The simulation profile matched GYRO \(Q_e + Q_i \) to corresponding power balance value.
GYRO Simulations Can Model the Effects of q and a/L_{Te} Individually

- A global, nonlinear GYRO simulation of the reference case (.8 MA in the I_p scan) was performed.

a/L_{Te} and q profile modification

- Starting from the reference case, both the q profile and a/L_{Te} were modified to match the .6 MA case. This approach was then repeated for the 1.2 MA case.
GYRO Simulations Can Model the Effects of q and \(a/L_{Te}\) Individually

- A global, nonlinear GYRO simulation of the reference case (.8 MA in the \(I_p\) scan) was performed

\(a/L_{Te}\) and q profile modification

- Starting from the reference case, both the q profile and \(a/L_{Te}\) were modified to match the .6 MA case. This approach was then repeated for the 1.2 MA case.

\(a/L_{Te}\) modification

- Starting from the reference case, the \(a/L_{Te}\) only was modified to match the .6 MA case. This was then repeated, changing only \(a/L_{Te}\) to match the 1.2 MA case.

- \(D\) and \(V\) are inferred from GYRO's impurity flux:
 - Quantitative agreement might not be expected due to a reduced physics model (no ExB) and unmeasured \(T_i\) profiles.
GYRO Simulations Can Model the Effects of q and a/L_{Te} Individually

- A global, nonlinear GYRO simulation of the reference case (.8 MA in the I_p scan) was performed.

a/L_{Te} and q profile modification

- Starting from the reference case, both the q profile and a/L_{Te} were modified to match the .6 MA case. This approach was then repeated for the 1.2 MA case.

a/L_{Te} modification

- Starting from the reference case, the a/L_{Te} only was modified to match the .6 MA case. This was then repeated, changing only a/L_{Te} to match the 1.2 MA case.

q profile modification

- Starting from the reference case, the q profile only was modified to match the .6 MA case. This was then repeated, changing only the q profile to match the 1.2 MA case.

- D and V are inferred from GYRO’s impurity flux:

\[
\frac{\Gamma_{GYRO}}{n_{imp}} = -D \frac{\nabla n_{imp}}{n_{imp}} + V
\]

- Quantitative agreement might not be expected due to a reduced physics model (no ExB) and unmeasured T_i profiles.

N. Howard APS DPP 2010
The Combined Effects of q Profile and a/L_{Te} Changes Reproduce the Experimental Trend of the Convective Velocity

Changing a/L_{Te} and q profile

- Trend in the convective velocity is well reproduced
- How important are the individual a/L_{Te} or q changes?

N. Howard APS DPP 2010
The Combined Effects of q Profile and a/L_{Te} Changes Reproduce the Experimental Trend of the Convective Velocity

Changing a/L_{Te} and q profile
- Trend in the convective velocity is well reproduced
- How important are the individual a/L_{Te} or q changes?

Changing a/L_{Te} only
- D is less discrepant but V shows effectively no trend.
The Combined Effects of q Profile and a/L_{Te} Changes Reproduce the Experimental Trend of the Convective Velocity

Changing a/L_{Te} and q profile
- Trend in the convective velocity is well reproduced
- How important are the individual a/L_{Te} or q changes?

Changing a/L_{Te} only
- D is less discrepant but V shows effectively no trend.

Changing q profile only

The trend of reduced inward convection with current is recovered with only changes in the q profile.
- It was observed that impurity confinement increases with plasma current.

 • Performing a scan of I_p at approximately fixed n_e, T_e, and P_{icrf} showed an increase in a/L_{Te} and q with current.

 • The magnitude of experimentally determined values of D and V were demonstrated to decrease with current.

 • GYRO simulations reproduce the experimental decrease in the inward convection.
 - a/L_{Te} changes are unimportant
 - Modification of the q profile is responsible for reproduction of the trend

 • Discrepancy in the diffusion coefficient can be investigated later through full physics simulations and STRAHL simulation of the GYRO output

N. Howard APS DPP 2010