Perturbative Thermal Transport Studies on Alcator C-Mod

A.J. Creely

A.E. White,1 E.M. Edlund,1 N.T. Howard,2 A.E. Hubbard,1 S. Houshmandyar3

1 MIT 2 ORISE 3 UT Austin

This work is supported by the US DOE under Grants DE-SC0006419 and DE-FC02-99ER54512-CMOD

A.J. Creely, APS DPP, Savannah, Georgia
Heat pulses generated by partial sawteeth used for first time to measure perturbative, or heat pulse, thermal diffusivity on extensive set of Alcator C-Mod plasmas.

Avoids issues with non-diffusive “ballistic” transport associated with heat pulses generated by full sawteeth.

New physics results [Creely NF Submitted]:

- Perturbative thermal diffusivity is correlated to stiffness differences between L-mode and I-mode regimes, as well as to density and temperature.

- Experimental perturbative thermal diffusivity agrees quantitatively with nonlinear GYRO multi-scale simulations [Howard NI3.00001].
Perturbative Thermal Diffusivity Governs the Propagation of Heat Pulses

- Standard power balance electron thermal diffusivity governs steady state diffusion.
- Perturbative, or heat pulse, thermal diffusivity, governs the diffusion of perturbations [Tubbing NF 1987].
- Should not be directly compared with one another.
- Same only if heat flux and temperature gradient are linearly related with no offset [Cardozo PPCF 1995].

\[
\chi_e^{PB} = \frac{1}{n_e} \frac{Q_e}{\nabla T_e} \quad \chi_e^{HP} = \frac{1}{n_e} \frac{\partial Q_e}{\partial (\nabla T_e)}
\]
Heat Pulse Thermal Diffusivity is Related to Gyrokinetic Temperature Profile Stiffness

- In gyrokinetic simulations, define electron temperature profile stiffness as slope of electron heat flux against \(a/L_{Te}\) above the critical gradient [Citrin NF 2014, Smith NF 2015].

\[
Stiffness = \frac{\partial Q_e}{\partial (a / L_{Te})} = \chi_e^{HP} \cdot \frac{n_e T_e}{a}
\]

- High confinement regimes tend to have higher temperature stiffness [White PoP 2015], so expect to find higher heat pulse thermal diffusivity.

\[Q_e (\text{MW/m}^2)\]

\[a/L_{Te}\]

Higher Stiffness

Lower Stiffness

High and low stiffness plasmas, with same critical gradient.

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
Heat Pulse Propagation Tracked with ECE Profile Diagnostics

- Grating Polychromometer (GPC) uses diffraction grating to split ECE, 9 channels [O’Shea PhD 1995].

- Fusion Research Center ECE (FRCECE) uses a heterodyne radiometer to collect ECE, 32 channels [Chatterjee FED 2001, Houshmandyar CP12.00007].

- Both standard electron temperature profile diagnostics on C-Mod. Both used to track heat pulses.

Illustration of a heat pulse propagating radially outward in the plasma. $r_1 < r_2 < r_3 < r_4$
Alcator C Mod Exhibits Heat Pulses Generated by Full and Partial Sawtooth Crashes

- Full sawtooth crashes utilized to study heat pulse thermal diffusivity [Callen PRL 1977, Cardozo PPCF 1995, etc.].

- Modeling reveals full sawtooth heat pulses often inconsistent with diffusive transport [Fredrickson PoP 2000].

- Full sawtooth crash “ballistic” effect is observed on C-Mod.

Full Sawtooth

Non-Diffusive Temperature Spike

A.J. Creely, APS DPP, Savannah, Georgia
Partial Sawteeth Generated Heat Pulses Used to Calculate Perturbative Diffusivity

- Modeling showed partial sawtooth heat pulses consistent with diffusive transport [Fredrickson 2000].
- C-Mod Partial sawteeth exhibit diffusive characteristics.
- Can be measured with Extended-Time-to-Peak Method [Tubbing NF 1987].

\[\chi_e^{HP} = 4.2 \frac{a_c V_{HP}}{\alpha} \]

Velocity of Peak: \(V_{HP} \)
Pulse Damping: \(\alpha \)
Minor Radius: \(a_c \)

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
L-Mode Experiments Show Perturbative Diffusivity Decreases as Density Increases

5.4 T on Axis

0.8 MA

0.0 – 1.2 MW P_{RF}

χ^H_P shows strong trend with density (L/I data set shows same trend)

Weaker trend with T_e and ∇T_e

![Graph showing perturbative diffusivity and density relationship](image-url)
Heat Pulse Diffusivity is Generally Higher in I-Mode than in L-Mode Within the Same Shot

I-Mode is High Confinement with temperature but no density pedestal [Hubbard KI2.00003]

\[I_p = 0.9-1.3 \, \text{MA} \quad B_t = 5.4 \, \text{T} \]
\[n_e = 0.4-1.3 \, 10^{20}/\text{m}^3 \]
All Unfavorable Grad B Drift
0.6 < r/a < 0.9

L- and I-mode diffusivities from same shot

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
Heat Pulse Diffusivity is Generally Higher in I-Mode than in L-Mode Within the Same Shot

I-Mode is High Confinement with temperature but no density pedestal [Hubbard KI2.00003]

\[I_p = 0.9-1.3 \text{ MA} \quad B_t = 5.4 \text{ T} \]
\[n_e = 0.4-1.3 \times 10^{20} / \text{m}^3 \]
All Unfavorable Grad B Drift
\[0.6 < r/a < 0.9 \]

L- and I-mode diffusivities from same shot

Consistent with trend seen in Gyrokinetic simulations [White PoP 2015]

A.J. Creely, APS DPP, Savannah, Georgia
Stiffness from Multi-Scale Gyrokinetic Simulations Can Match L-Mode Experiment

- Ion-scale simulations (ITG/TEM) under-predict stiffness for L-mode plasma [White PoP 2015]

- New multi-scale simulations (ITG/TEM/ETG) match experimental values [Howard PoP 2014, Howard NI3.00001]

- Perturbative diffusivities extracted from partial sawtooth heat pulses provide a validation constraint for gyrokinetic simulations.

\[\chi_{exp}^{HP} = 1.6 \pm 0.4 \, \frac{m^2}{s} \]
\[\chi_{Multi}^{HP} = 1.4 \, \frac{m^2}{s} \]
\[\chi_{Ion}^{HP} = 0.2 \, \frac{m^2}{s} \]
Conclusions and Future Work

- Perturbative thermal diffusivity in tokamak plasmas has been measured via partial sawtooth heat pulses on large data set for the first time.

- Heat pulse thermal diffusivity appears to be correlated with L-mode and I-mode stiffness differences, as well as local density, temperature and temperature gradient.

- Quantitative agreement found between experimental χ_e^{HP} and multi-scale GYRO results, leading to new validation constraint.

- Future Work
 - Further study of density trend (collisionality, etc.)
 - Expansion of data set to include H-mode
 - Application of method to additional machines (ASDEX-Upgrade)
 - Further comparison to GYRO gyrokinetic simulations [White PoP 2015] and [Howard PoP 2014]
References

 Backup:
Standard ion-scale simulations (ITG/TEM turbulence) underpredict the perturbative thermal diffusivity [White PoP 2015], but new multi-scale (ITG/TEM coupled with ETG) simulations can match the experimental perturbative diffusivity within error bars [Howard PoP 2014].

Perturbative diffusivities extracted from heat pulses due to partial sawteeth provide a new constraint that can be used to validate gyrokinetic simulations.
First Table showing Partial/Full comparisons?

<table>
<thead>
<tr>
<th>Shot</th>
<th>Confinement</th>
<th>$\chi_{\text{Partial}}^{HP}$ (m^2/s)</th>
<th>χ_{Full}^{HP} (m^2/s)</th>
<th>χ_{ePB}^{PB} (m^2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1120221011</td>
<td>L-Mode</td>
<td>1.13 ± 0.26</td>
<td>3.30 ± 0.53</td>
<td>1.84</td>
</tr>
<tr>
<td>1120626023</td>
<td>Ohmic (LOC)</td>
<td>2.67 ± 0.52</td>
<td>3.79 ± 0.65</td>
<td>1.26</td>
</tr>
<tr>
<td>1120626028</td>
<td>Ohmic (SOC)</td>
<td>1.70 ± 0.38</td>
<td>2.81 ± 0.46</td>
<td>1.02</td>
</tr>
<tr>
<td>1101209029</td>
<td>L-Mode</td>
<td>1.74 ± 0.27</td>
<td>4.67 ± 1.09</td>
<td>1.39</td>
</tr>
<tr>
<td>1101209029</td>
<td>I-Mode</td>
<td>2.03 ± 0.39</td>
<td>3.03 ± 0.87</td>
<td>0.73</td>
</tr>
<tr>
<td>1120221012</td>
<td>L-Mode</td>
<td>1.61 ± 0.36</td>
<td>3.59 ± 0.56</td>
<td>1.83</td>
</tr>
</tbody>
</table>
Radial Dependence of Perturbative Diffusivity Appears to Vary with Density

High/low density RF L-mode plasmas

5.4 T, 0.8 MA, 1.2 MW P_{RF}

High = 1.4×10^{20}/m3
Low = 0.7×10^{20}/m3

χ_e^{HP} Radially Averaged

\sim10% Correction Due to Radial Dependence of ETTP Calculation
Heat Pulse Diffusivity Shows Correlation with Pulse Location Temperature

Thermal Diffusivity versus Radially Averaged Temperature

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
Temperature Gradient Shows Correlation Similar to that of Temperature
\(a/L_{Te} \) Shows Separation Between L-mode and I-mode, Possible Cutoff

A.J. Creely, APS DPP, Savannah, Georgia
Heat Pulse Diffusivity Shows Correlation with Radially Averaged Density

A.J. Creely, APS DPP, Savannah, Georgia
Density Gradient Exhibits Possible Correlation, Possible Critical Density

A.J. Creely, APS DPP, Savannah, Georgia
a/Ln shows slightly clearer cutoff, above which diffusivity is limited.
Heat Pulse Diffusivity Uncorrelated With Pulse Amplitude

Perturbative Diffusivity (m^2/s) vs. Pulse Amplitude (keV)

L Mode
I Mode

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
I-Mode Tends to Have Larger Stored Energy for a Given Current than L-Mode
Density and Stored Energy Have a Weak Positive Correlation

Density versus Stored Energy

- L Mode
- I Mode

A.J. Creely, APS DPP, Savannah, Georgia
Thermal Diffusivity Shows Little Correlation with Stored Energy

Thermal Diffusivity versus Stored Energy

- **Perturbative Diffusivity (m²/s)**
 - L Mode
 - I Mode

A.J. Creely, APS DPP, Savannah, Georgia

A11.20 17.11.15
Current and Density are Highly Correlated

Current versus Density

Density (1/m3)

Plasma Current (MA)

- L Mode
- I Mode

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
Thermal Diffusivity and Plasma Current are Weakly Correlated

Thermal Diffusivity versus Plasma Current

Perturbative Diffusivity (m²/s)

Plasma Current (MA)

L Mode
I Mode

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
Thermal Diffusivity and RF Power are Generally Uncorrelated

Thermal Diffusivity versus RF Power

Perturbative Diffusivity (m²/s)

L Mode
I Mode

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
The MHD Nature of Full Sawtooth Causes the Non-Diffusive “Ballistic” Transport

- Sawteeth involve the n=1, m=1 MHD kink instability, and a macroscopic redistribution of plasma after reconnection [Udintsev PPCF 2005], [Park PRL 2006].

- Magnetic stochastization leads to non-diffusive “ballistic” transport [Fredrickson PoP 2000].

- Partial sawteeth caused by partial reconnection, so are qualitatively different from full sawteeth [Fredrickson PoP 2000].
The Extended-Time-to-Peak method of calculating the perturbative thermal diffusivity uses the following equation (see [Tubbing NF 1987] for the full derivation):

Heat Pulse Thermal Diffusivity:

\[\chi_{e}^{HP} = 4.2 \frac{a_{c} V_{HP}}{\alpha} \]

Where:

- \(a_{c}\) is the minor radius corrected for elongation (m)
- \(V_{HP}\) is the velocity of the peak of the heat pulse (m/s)
- \(\alpha\) is a measure of heat pulse amplitude spread with increasing radius (unitless)

Has been compared to Fourier analysis with good agreement [Mantica NF 1992]
Derivation of formula for Heat Pulse Thermal Diffusivity

From [Tubbing 1987]:

Has been compared to Fourier analysis with good agreement [Mantica NF 1992]

For:

\[\chi_e^{HP} = 4.2 \frac{a_c v_{HP}}{\alpha} \]

\[v_{HP} = \sqrt{\kappa} \frac{a}{a-s} \left(\frac{dt_{peak}}{dr} \right)^{-1} \]

\[a_c = a \sqrt{\kappa} \]

\[\alpha = 10(a-s) \frac{d}{dr} \log A \]

Where:
- \(A \) = Pulse Amplitude
- \(a \) = Minor Radius
- \(s \) = Shafranov Shift
- \(\kappa \) = Elongation
- \(t_{peak} \) = Time at which pulse peak passes radius \(r \)

A.J. Creely, APS DPP, Savannah, Georgia
17.11.15
Heat Pulse Thermal Diffusivity Model is Applicable to C-Mod

Assumptions included in [Tubbing 1987] model:

- Assume heat transport is dominated by conduction (convection is ignored)
- Includes Shafranov and elongation corrections to cylindrical plasma
- Assume thermal diffusivity is a function only of the electron temperature gradient
- Model includes decay of heat pulse amplitude in addition to velocity
- Radially averages over region of pulse propagation
- Has been compared to Fourier analysis with good agreement [Jacchia 91]
Alcator C Mod is a high-field, compact, divertor tokamak

- $R = 0.67 \, \text{m}$
- $a = 0.22 \, \text{m}$
- $B_T = 2.5 \text{ – } 8 \, \text{T}$
- $I_p < 1.3 \, \text{MA}$
- $P_{ICRF} < 6 \, \text{MW}$
- Moly/W PFCs with Boron coating
- Cryopump density control
 [Greenwald 2014]
ECE Diagnostics (GPC and FRCECE)

- Uses diffraction grating to split ECE spectrum [O’Shea PhD 1995].
- 9 channels corresponding to different frequencies and thus different radial locations
- 100 kHz sampling
- Radial channel spacing of approximately 2 cm
- Heat Pulse Thermal Diffusivity averaged in $0.6 < \frac{r}{a} < 0.9$
Partial Sawtooth Heat Pulse Results Agree More Closely with Gyrokinetic Simulation

Using:

\[\chi_{e}^{HP} = \frac{1}{n_e} \frac{\partial Q}{\partial (\nabla r T_e)} \]

GYRO scans a/L_{te} and then calculates the heat pulse thermal diffusivity.

[White 2015]

\[\chi_{GYRO}^{HP} = 0.3 \, m^2/s \]

\[\chi_{full}^{HP} = 4.7 \, m^2/s \]

\[\chi_{partial}^{HP} = 1.7 \, m^2/s \]

L-mode:

I-mode:

\[\chi_{GYRO}^{HP} = 0.8 \, m^2/s \]

\[\chi_{full}^{HP} = 3.0 \, m^2/s \]

\[\chi_{partial}^{HP} = 2.0 \, m^2/s \]

A.J. Creely, APS DPP, Savannah, Georgia

17.11.15
Stiffness from GYRO Simulations Can Be Compared to Experimental Diffusivity

- Set of non-linear GYRO simulations (input a/L_{Te} scan) is used to extract incremental diffusivity as slope of; Q_{e}/n_{e} versus Grad T_{e} [Smith NF 2015]
- Have used ion-scale simulations (ITG/TEM only) to model L-mode and I-mode plasmas [White PoP 2015]
- Have also used multi-scale simulations (ITG/TEM/ETG) to model an L-mode plasma [Howard PoP 2014]

Ion-scale only GYRO Stiffness

A.J. Creely, APS DPP, Savannah, Georgia
GYRO is a Nonlinear Gyrokinetic Simulation Environment

GYRO used as follows:

- Local simulations conducted at $r/a = 0.6$
- Flux tube with non-periodic boundary conditions
- Experimental n_e, T_e, T_i, Z_{eff}, v_{rot} etc. used as input to code
- ExB shear, collisions included, impurities included, electrostatic only
- Long wavelength ITG/TEM only ($k_\Theta \rho_s < 1.4$)
- High-k ETG not included

[White 2015]
Sawtooth Crash

[Udintsev PPCF 2006]

A.J. Creely, APS DPP, Savannah, Georgia
Heat Pulse Thermal Diffusivity in L-Mode and I-Mode Confinement Will be Compared

- I-Mode is a high confinement regime
- Steep T_e pedestal, no n_e pedestal
 - T_i pedestals are similar
 - High T_e, T_i and rotation across profile
- Energy confinement comparable to or exceed H-mode [Whyte 2010]
- L-mode density profile
 - Impurity confinement like L-mode
- I-mode observed on C-Mod, ASDEX Upgrade and DIII-D. [Hubbard 2012]
I-mode transition features reduction in edge turbulence, appearance of WCM

- As the Temperature pedestal forms across the L-I transition
 - Broadband edge turbulence decreases in the range $f = 100$-200 kHz

- Turbulence increases at higher f
 - Known as the Weakly Coherent Mode
 - $F = 200$-300 kHz

- Sawtooth heat pulses modulate WCM amplitude

[White 2013]