The Role of Nonlinear Interactions in Causing Transitions into ETB Regimes

I. Cziegler1,
A.E. Hubbard2, J.W. Hughes2, J.H. Irby2, J.L. Terry2, G.R. Tynan1

1University of California, San Diego
2Massachusetts Institute of Technology, PSFC

Supported by US DoE, Office of Science
DE-SC-0008689 and DE-FC02-99ER54512

57th Annual Meeting of the APS DPP,
Savannah, GA, November 16, 2015
Motivation: understanding confinement states and transitions

- **H-mode**: edge transport barrier of heat and mass
- **Significance**: – tokamak plasma phases exist
 – future devices need high pressure
- **Need to predict the L-H transition power threshold**

![Graph showing normalized poloidal flux vs. normalized poloidal flux with H-mode and L-mode represented.](image)

\[n_e [10^{20} \text{ m}^{-3}] \]

\[T_e [\text{eV}] \]
Motivation: understanding confinement states and transitions

- H-mode: edge transport barrier of heat and mass
- Significance: – tokamak plasma phases exist
 – future devices need high pressure
- Need to predict the L-H transition power threshold
- Present empirical scaling ignores some real physics
 (M_i, v_{ϕ}, divertor geometry, etc)

\[P(MW) = 0.049 B_{\phi}^{0.8} n_e^{0.72} S^{0.94} \]

(Martin, JoP, 2008)
Motivation: understanding confinement states and transitions

- H-mode: edge transport barrier of heat and mass
- Significance: – tokamak plasma phases exist
 – future devices need high pressure
- Need to predict the L-H transition power threshold
- Present empirical scaling ignores some real physics (M_i, v_{ϕ}, divertor geometry, etc)

 Particularly:
 – $B \times \nabla B$ asymmetry
 – intermediary states (I-mode, LCO)
Motivation: understanding confinement states and transitions

- H-mode: edge transport barrier of heat and mass
- Significance: – tokamak plasma phases exist
 – future devices need high pressure
- Need to predict the L-H transition power threshold
- Present empirical scaling ignores some real physics
 \(M_i, v_{\phi_i}, \) divertor geometry, etc
- Particularly:
 – B×∇B asymmetry
 – intermediary states (I-mode, LCO)
- Physics-based model:
 – identify L-to-H transition trigger mechanism
 – connect turbulence physics to macroscopic scaling

\[n_e [10^{20} \text{ m}^{-3}] \]
\[T_e [\text{eV}] \]
\[\text{normalized poloidal flux} \]
Outline

• Background:
 – turbulence-flow interactions in the L-H transition
 – $B \times \nabla B$ asymmetry: the I-mode and Limit-Cycle-Oscillations

• Turbulence physics in L-mode leading up to confinement transitions

• Flow dynamics in the I-mode regime and accessibility

• Conclusions
Focus on immediate trigger of L-H transition

Study flow dynamics at ~5-10ms around L-H transition...

...in the region where the edge transport barrier forms.
Transient at L-H and the drift-wave/zonal-flow system

- Poloidal flows in the edge are important
- Particularly E_r before evolution of the pressure gradient
- Gradient + electric field lead to feedback loop

Transient at L-H and the drift-wave/zonal-flow system

• Poloidal flows in the edge are important
• Particularly E_r before evolution of the pressure gradient
• Gradient + electric field lead to feedback loop
• Candidate for trigger: predator-prey model
 (Kim, Diamond PRL 2003)
 (Miki, Diamond PoP 2012)
Nonlinear transfer explains initial turbulence reduction and generation of poloidal flow

Turbulent kinetic energy:
\[\partial_t \tilde{K} = \gamma_{\text{eff}} \tilde{K} - P - \partial_r \tilde{T} \]
\[\tilde{K} = \frac{1}{2} \langle \tilde{v}_\theta^2 \rangle \]

Large-scale flow energy:
\[\partial_t \tilde{K} = P - \partial_r \tilde{T} - \nu_{\text{LF}} \tilde{K} \]
\[\tilde{K} = \frac{1}{2} \langle v_\theta \rangle^2 \]
Nonlinear transfer explains initial turbulence reduction and generation of poloidal flow

Turbulent kinetic energy:
\[
\frac{\partial_t \tilde{K}}{\tilde{K}} = \gamma_{\text{eff}} \tilde{K} - P - \partial_r \tilde{T}
\]
\[
\tilde{K} = \frac{1}{2} \langle \tilde{v}_\theta^2 \rangle
\]

Large-scale flow energy:
\[
\frac{\partial_t \bar{K}}{\bar{K}} = P - \partial_r \bar{T} - \nu_{\text{LF}} \bar{K}
\]
\[
\bar{K} = \frac{1}{2} \langle v_\theta \rangle^2
\]

Zonal flow production term:
\[
P = \langle \bar{v}_r \bar{v}_\theta \rangle \partial_r \langle v_\theta \rangle
\]
Nonlinear transfer explains initial turbulence reduction and generation of poloidal flow

Turbulent kinetic energy: \[\partial_t \tilde{K} = \gamma_{\text{eff}} \tilde{K} - P - \partial_r \tilde{T} \]
\[\tilde{K} = \frac{1}{2} \langle \tilde{v}_\theta^2 \rangle \]

Large-scale flow energy:
\[\partial_t \tilde{K} = P - \partial_r \tilde{T} - \nu_{\text{LF}} \tilde{K} \]
\[\tilde{K} = \frac{1}{2} \langle v_\theta \rangle^2 \]

Zonal flow production term:
\[P = \langle \tilde{v}_r \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle \]

1st order condition on turbulence quenching:
\[R_T \equiv \frac{P + \partial_r \tilde{T}}{\gamma_{\text{eff}} \tilde{K}} > 1 \]
Nonlinear transfer explains initial turbulence reduction and generation of poloidal flow

Turbulent kinetic energy: \[\partial_t \tilde{K} = \gamma_{\text{eff}} \tilde{K} - P - \partial_r \tilde{T} \]
\[\tilde{K} = \frac{1}{2} \langle \tilde{v}_\theta^2 \rangle \]

Large-scale flow energy: \[\partial_t \tilde{K} = P - \partial_r \tilde{T} - \nu_{\text{LF}} \tilde{K} \]
\[\tilde{K} = \frac{1}{2} \langle v_\theta \rangle^2 \]

Zonal flow production term: \[P = \langle \tilde{v}_r \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle \]

1st order condition on turbulence quenching:
\[R_T \equiv \frac{P + \partial_r \tilde{T}}{\gamma_{\text{eff}} \tilde{K}} > 1 \]
Nonlinear transfer explains initial turbulence reduction and generation of poloidal flow

Turbulent kinetic energy:
\[\partial_t \tilde{K} = \gamma_{\text{eff}} \tilde{K} - P - \partial_r \tilde{T} \]
\[\tilde{K} = \frac{1}{2} \langle \tilde{v}_\theta^2 \rangle \]

Large-scale flow energy:
\[\partial_t \tilde{K} = P - \partial_r \tilde{T} - \nu_{\text{LF}} \tilde{K} \]
\[\tilde{K} = \frac{1}{2} \langle v_\theta \rangle^2 \]

Zonal flow production term:
\[P = \langle \tilde{v}_r \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle \]

1st order condition on turbulence quenching:
\[R_T \equiv \frac{P + \partial_r \tilde{T}}{\gamma_{\text{eff}} \tilde{K}} > 1 \]

- Experiments pin down sequence of transition
- nonlinearity leads
- mean shear flow locks in H-mode

Cziegler et al, PPCF 2014/NF 2015
Nonlinear transfer explains initial turbulence reduction and generation of poloidal flow

Turbulent kinetic energy:
\[\partial_t \tilde{K} = \gamma_{\text{eff}} \tilde{K} - P - \partial_r \tilde{T} \]
\[\tilde{K} = \frac{1}{2} \left\langle \tilde{v}_\theta^2 \right\rangle \]

Large-scale flow energy:
\[\partial_t \tilde{K} = P - \partial_r \tilde{T} - \nu_{\text{LF}} \tilde{K} \]
\[\tilde{K} = \frac{1}{2} \left\langle v_\theta \right\rangle^2 \]

Zonal flow production term:
\[P = \left\langle \tilde{v}_r \tilde{v}_\theta \right\rangle \partial_r \left\langle v_\theta \right\rangle \]

1st order condition on turbulence quenching:
\[R_T \equiv \frac{P + \partial_r \tilde{T}}{\gamma_{\text{eff}} \tilde{K}} > 1 \]

- Experiments pin down sequence of transition
- nonlinearity leads
- mean shear flow locks in H-mode
Transfer is localized to narrow region at edge with shear

I. Cziegler, APS-DPP, Savannah, GA
Drift **towards** active X-point
- H-mode threshold $\sim P_{th}(\text{Martin})$
- Below threshold: **LCO** regime, aka “dithers”, aka “I-phase”

Drift **away from** active X-point
- H-mode threshold $\sim 2 \times P_{th}(\text{Martin})$
- Below threshold: **I-mode** (at low n_e)
B×∇B asymmetry: the I-mode and Limit-Cycle-Oscillations

"Favorable" configuration – for H-mode

- Drift **towards** active X-point
- H-mode threshold \(\sim P_{th} \) (Martin)
- Below threshold: **LCO** regime, aka "dithers", aka "I-phase"

"Unfavorable" configuration

- Drift **away from** active X-point
- H-mode threshold \(\sim 2 \times P_{th} \) (Martin)
- Below threshold: **I-mode** (at low \(n_e \))

Both have further, as yet unexplained sensitivities – \((B_\varphi, n_e, I_p)\)
Outline

• Background:
 – turbulence-flow interactions in the L-H transition
 – B×∇B asymmetry: the I-mode and Limit-Cycle-Oscillations

• Turbulence physics in L-mode leading up to confinement transitions

• Flow dynamics in the I-mode regime and accessibility

• Conclusions
Diagnostic setup

Primary diagnostic: **Gas Puff Imaging**

- inject D_2 or He, sensitive to n_e, T_e
- small toroidal extent ($\sim 5\text{cm}$) allows localization
- 90 channels cover $\sim 4\text{cm} \times 3.6\text{cm}$
- views coupled to avalanche photodiodes (APD), sampled at 2 MHz

- Two-point correlation time delay estimate (TDE):
 \[\nu_i = \Delta x_i / \tau_d \]
 with a 10μs sample size per point.

- Averaging in analysis involves
 \[\langle v \rangle = \langle v \rangle_{\theta_i, t} \]
 \[v = v_{3\text{kHz}} \quad \tilde{v} = v_{50\text{kHz}} \]
Strong transfer from all frequencies observed near threshold power

Bispectral estimate of three-wave coupling with “source” f_1 and “target” f freq. resolved

$$T_v(f, f_1) = -\text{Re}(\langle \tilde{v}_\theta(f) \tilde{v}_r(f - f_1) \partial_r \tilde{v}_\theta(f_1) \rangle)$$

Ohmic L-mode

no strong transfer of poloidal flow power

$P_{aux} = 750\text{kW}$

clear transfer btwn flctns in 5-40 kHz range with aux. power below threshold (favorable geometry)
Quantification of kinetic energy transfer from turbulence to ZF

- Transfer rates defined as sum of transfer function normalized to flow power
- Quantified below some frequency for ZF
- With strong ICRF heating, clear peak is shown
- Other frequencies average to negative value
H-mode-favorable $B \times \nabla B$: more transfer at same heat flux and n_e

Sensible control parameter is:

$$P_{\text{net}} = P_{\text{RF,abs}} + P_{\text{oh}} - dW/dt - P_{\text{rad}}$$

- Transfer into zonal flow increases monotonically with P_{net}
H-mode-favorable $B \times \nabla B$: more transfer at same heat flux and n_e

Sensible control parameter is: $P_{\text{net}} = P_{\text{RF,abs}} + P_{\text{oh}} - \frac{dW}{dt} - P_{\text{rad}}$

- Transfer into zonal flow increases monotonically with P_{net}
- Transfer is $\sim 2x$ in favorable geom.
H-mode-favorable $B \times \nabla B$: more transfer at same heat flux and n_e

Energy transfer rate into ZF

Sensible control parameter is:

$$P_{\text{net}} = P_{\text{RF,abs}} + P_{\text{oh}} - dW/dt - P_{\text{rad}}$$

- Transfer into zonal flow increases monotonically with P_{net}
- Transfer is $\sim 2x$ in favorable geom.
- Same normalized energy transfer at the H-mode transition in the favorable/unfavorable geometry
- Consistent with threshold asymmetry: strong ZF are needed
Is shear or stress the dominant component in transfer?
Velocity shear still depends strongly on heat flux

Reminder: ZF-production \[P = \langle \tilde{v}_r, \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle \]
Is shear or stress the dominant component in transfer? Velocity shear still depends strongly on heat flux

Reminder: ZF-production $P = \langle \tilde{v}_r \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle$
Is shear or stress the dominant component in transfer? Velocity shear still depends strongly on heat flux

Reminder: ZF-production $P = \langle \bar{\nu}_r \bar{\nu}_\theta \rangle \partial_r \langle \nu_\theta \rangle$

- grad-B asymmetry persists
- velocity shears are clearly distinguishable between favorable/unfavorable
Does shear determine stress? Are other components (e.g. magnetic shear) just as important?

- strong correlation observed
- grad-B asymmetry disappears
- single correlation \rightarrow magnetic shear/stress makes little difference in asymmetry
- Results seem to point to a minimum shear needed for any Reynolds stress to appear
- consistent with eddy shearing mechanism of Reynolds stress generation
Favorable/unfavorable expts go up to different types of transitions

L-H transition L-I transition

En. transf. rate to ZF (10^5 s$^{-1}$)

P_{net} (MW)

1.2 MA 1.2 MA
1.0 MA 1.0 MA
0.8 MA 0.8 MA

unfav fav

I. Cziegler, APS-DPP, Savannah, GA
Outline

• Background:
 – turbulence-flow interactions in the L-H transition
 – $B \times \nabla B$ asymmetry: the I-mode and Limit-Cycle-Oscillations

• Turbulence physics in L-mode leading up to confinement transitions

• Flow dynamics in the I-mode regime and accessibility

• Conclusions
I-mode: attractive alternative high confinement regime

- stationary, high energy confinement, low τ_p, ELM-free regime
- explored on C-Mod, AUG and DIII-D, helping to delineate its operational space

Amanda Hubbard, Invited Tues. Afternoon. KI2.00003
Characteristic edge fluctuations: WCM and GAM

- Only regime in Alcator C-Mod with poloidal velocities exhibiting geodesic acoustic modes (GAM)
- GAM: $n=m=0$ electrostatic modes, rotating plasma shells back and forth at moderate frequencies
- Nonlinear studies show GAM responsible for broad frequency range in weakly coherent mode (WCM)
- Which is responsible for unique quality of transport?

I. Cziegler, APS-DPP, Savannah, GA
L-I transition on a fine time scale dissimilar to L-H

L-I transition

- **D_α**
- **T_e (a)**
- **\(\frac{\tilde{n}_e}{n_0} \)**
- **V_{GAM}**

L-H transition

- **D_α**
- **\(\text{grad} \rho_e \ (10^6 \text{keV/m}^4) \)**
- **turbulent energy**
- **V_{E\times B} (km/s)**
- **normalized transfer \(R_t \)**
- **\(\gamma_{\text{eff}} \) **

- No significant D_α drop (mass transport L-mode-like)
- Beginning of heat pulse
- Total turbulence power **not affected**
- Onset of GAM (due to \(T_e \) rise, \(\nu_\parallel \) drop)

\[
-\left(\langle \tilde{v}_r \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle \right) \frac{1}{\langle v_\theta^2 \rangle \gamma_{\text{eff}}} R_t \text{-like term}
\]
Transfer function in unfavorable dir. indicates GAM/ZF competition

I. Cziegler, APS-DPP, Savannah, GA
Can transfer function be “continued” into I-mode?

- GAM transfer small but comparable to ZF rates
- I-H transition is still poorly understood
- GAM-ZF competition?
- ZF transfer continues on in the I-mode regime?
- trend of ZF shows plausible I-H mechanism

I. Cziegler, APS-DPP, Savannah, GA
Evidence points to role of GAM damping in I-mode access

Neoclassical estimate: \(\gamma = \frac{4}{7}(\nu_{ii}/q) \)

Compared to nonlinear drive

- Damping is compared to nonlinear drive (analogous to ZF-production)
- Demonstrates dependence on T:
 \(\nu_{ii} \propto T_e^{-3/2} \)
- I-mode threshold shown [Hubbard NF12] to scale as
 \(P_{th} \propto I_p \propto 1/q \)
Evidence points to role of GAM damping in I-mode access

Neoclassical estimate: $\gamma = \frac{4}{7}(\nu_{ii}/q)$

- Threshold is also shown to be sensitive to impurities; which is expected due to:

$$\nu_{ii} = f_i \nu_{i-D}$$

where f_i is ion impurity collision factor

- Effective atomic number Z_{eff} is used as a proxy

- Consistent with difficulty accessing the regime in He plasma
Both GAM and edge coherent mode are crucial for I-mode

I-mode S(k,f)

- WCM

pre-I L-mode

- edge coherent mode

Evolution from L-mode

- Ohmic pre-I I-mode
- df/f=0.1
- df/f=0.7

C-Mod:
- coherent mode close to I-mode (seed of WCM without GAM)
- I-mode when GAM appears
- no GAM in L-mode or H-mode

AUG: [Manz NF ‘15]
- GAM are present in L-mode
- no high frequency coherent fluctuation
- I-mode when mode appears

I. Cziegler, APS-DPP, Savannah, GA
Conclusions

• Measurements of edge flow nonlinearities support predator-prey dynamics

• Kinetic energy transfer in favorable/unfavorable shows a ~2x asymmetry – consistent with strong Zonal Flows being necessary for L-H transition

• Reynolds stress is determined by flow shear, showing relatively minor contribution from magnetic effects

• Transition dynamics are not analogous in L-H and L-I transition with ZF and GAM phenomena, yet:

 • Both GAM and edge coherent mode are necessary for I-mode

 • Fine details of GAM damping show correlation with I-mode access
Open Questions

• origin of WCM - expect coherent mode!

• origin of the separation of transport channels:
 - high freq driving mass transport?
 - reduction of low freq component?

• Is the ZF still the trigger in the I-H transition?
 – need correct ZF measurement in I-mode
 – compare GAM and ZF transfers
Supplemental material
GAM is responsible for broad frequency range of WCM via nonlinear coupling.

The weakly coherent mode is predominantly a density fluctuation. Consequently, the relevant nonlinear transfer process is:

\[
T_n(f, f_1) = -\text{Re}(\langle \tilde{n}_f^* \tilde{\nu}_{-f_1} \partial_i \tilde{n}_{f_1} \rangle)
\]

\[
\frac{T_n(f, f_1)}{\langle \tilde{n}_f^2 \rangle^{1/2}} \quad \frac{T_n(f)}{\langle \tilde{n}_f^2 \rangle}
\]
Motivation of time-resolved analysis technique

\(\partial_t v_\theta + v_r \partial_r v_\theta = \mu \partial_r^2 v_\theta \)
Momentum equation for incompressible fluid

\(v = \langle v \rangle + \tilde{v}, \quad \langle \tilde{v} \rangle = 0 \)
Reynolds decomposition

\[
\partial_t \tilde{K} = \gamma_{\text{eff}} \tilde{K} - P - \partial_r \tilde{T}
\]
kinetic energy in turbulence

\[
\partial_t \bar{K} = P - \partial_r \bar{T} - \nu_{\text{LF}} \bar{K}
\]
kinetic energy in low freq flow

with \(\gamma_{\text{eff}} \) : net difference of drive and decorrelation

\[
\tilde{K} = \frac{1}{2} \langle \tilde{v}_\theta^2 \rangle \quad \bar{K} = \frac{1}{2} \langle v_\theta \rangle^2
\]

Reynolds stress mediated zonal flow production:

\[P = \langle \tilde{v}_r \tilde{v}_\theta \rangle \partial_r \langle v_\theta \rangle \]

Transport terms in the form of energy flux:

\[\tilde{T} = \langle \tilde{v}_r \tilde{v}_\theta^2 \rangle / 2 \quad \bar{T} = \langle \tilde{v}_r \tilde{v}_\theta \rangle \langle v_\theta \rangle \]
Sample traces

Low frequency flows: from 3 separate experiments

Poloidal velocity excursion is reproduced in all H-mode favorable transitions regardless of:
- the kind of L-H transition
- magnetic field
- threshold power
- geometry

Time histories are aligned by D_α light drop at $t = 0$ ms

Turbulent velocities
Nonlinear transfer is the dominant quenching mechanism

For a quantitative test of the adequacy of the mechanism to cause the full extent of turbulence quenching, integrate the model Eq.

\[I_{tr} \equiv \int_{t_{min}}^{t_{max}} \left(P + \frac{\partial r}{\partial t} \tilde{T} - \gamma_{eff} \tilde{K} \right) dt \]

\[- \int_{t_{min}}^{t_{max}} \partial_t \tilde{K} dt = \Delta \tilde{K}; \]

- Nonlinear energy transfer exceeds the amount that is expected if this is the dominant turbulence quenching mechanism
- radial structure is considered
- turbulence is not homogenous poloidally while flow is
Convergence of bicoherence

- Good sign of convergence for both (bicoherence and transfer) estimators
- Reasonable convergence by ~280 realizations
- Coupling (b^2) shows before drive (T_u) is significant or
- before I-mode (typical GAM regime in C-Mod)
First order condition on turbulence collapse: terms taking energy from turbulence into zonal flows must exceed the drive. Written with symbols from the model equations:

\[R_T \equiv \frac{P + \partial_r \tilde{T}}{\gamma_{\text{eff}} \tilde{K}} > 1, \quad \text{1D including the energy-flux-like term} \]

where transfer terms and the kinetic energy are directly calculated, and \(\gamma_{\text{eff}} \) can be estimated from the model Eq. in a stationary L-mode as

\[\nu_{\text{LF}}|_L = \left[\frac{\partial_r \langle \tilde{v}_r \tilde{v}_\theta \rangle}{\langle v_\theta \rangle} \right]_{\text{L-mode}} \]

\[\gamma_{\text{eff}}|_L = \left[\frac{P + \partial_r \tilde{T}}{\tilde{K}} \right]_{\text{L-mode}} \]

Full L-H transition requires growth of non-turbulence driven shear, ie pressure gradient, to lock in H-mode once turbulence is reduced.