Perturbative transport modeling and comparison to cold-pulse and heat-pulse propagation experiments in Alcator C-Mod and DIII-D

P. Rodriguez-Fernandez¹, A. E. White¹, N. M. Cao¹, A. J. Creely¹, M. J. Greenwald¹, N. T. Howard¹, A. E. Hubbard¹, J. W. Hughes¹, J. H. Irby¹, C. C. Petty², J. E. Rice¹, and Alcator C-Mod Team¹

¹Plasma Science and Fusion Center (MIT), Cambridge MA
²General Atomics, San Diego CA

58th Annual Meeting of the APS-DPP, San Jose CA

November 2nd, 2016

Work supported by US DOE under grants DE-FC02-99ER54512 (C-Mod) and DE-FC02-04ER54698 (DIII-D) and La Caixa Fellowship
Past work suggested that “non-local effects” are correlated with intrinsic rotation reversals

- [Rice NF 2013], [Gao NF 2014]
- Seemingly unrelated parameters abruptly change:
 - Ohmic confinement saturation, ”Non-local” heat transport,
 - **Intrinsic Rotation**, Density profile peaking, Up/down impurity asymmetry

New experiments and analysis techniques show that plasma current and auxiliary heating decorrelate “non-local effects” and intrinsic rotation reversals.

Figure from Rice J. E. et al., NF 2013
Perturbative transport studies the effect of perturbations

- Perturbative transport focuses on the response of the plasma to perturbations to isolate the effect of different contributions to transport.
- Transport is modified during the perturbation state due to changes in:
 - Steady-state plasma parameters ($\Delta T_e, \Delta n_e, \Delta I_p, \ldots$)
 - Instability thresholds \Rightarrow Enhance turbulent transport

Figure from [Kissick NF 1994]
In 1995, experiments in TEXT showed that core T_e rises after injecting edge cold pulse

- In low density plasmas \Rightarrow Core T_e increases as a consequence of sharp edge T_e drop
- Observed in many devices:
 - TEXT, TFTR, Tore Supra, RTP, ASDEX-U, JET, LHD,
 - HL-2A and Alcator C-Mod
- Reduction of transport \Rightarrow Transient enhancement of confinement!

Past work on C-Mod suggested correlation with intrinsic rotation

- T_e inversions are known to disappear at a given value of density
- [Rice NF 2013] suggested that, in Alcator C-Mod, V_{tor} reversal was coincidental with the disappearance of T_e inversions
- Unified model for multi-channel transport was suggested
- In this work, new experiments were designed to test the robustness of this “unified” result
Observed mixing effect motivates new parameterization of T_e response

- LBO system at C-Mod allows multiple injections and controlled amount of impurities
- Mixing process: Inward-propagating Edge cold-pulse + Temperature Inversion

Observed mixing effect motivates new parameterization of T_e response

- LBO system at C-Mod allows multiple injections and controlled amount of impurities
- Mixing process: **Inward-propagating Edge cold-pulse + Temperature Inversion**

Extract of Figure 23 from [Rice NF 2013]
In contrast to past work, transition from "non-local" to standard transport is smooth.

Core $\pm |\Delta T_e|$ depends strongly on I_p and P_{RF}.

At high I_p, inversions persist at HIGH $\langle n_e \rangle_l$.
T_e inversions observed with both co-current and counter-current rotation

a) Shot 1120216017 1.1 MA, low density
b) Shot 1120216011 1.1 MA, high density
T_e inversions and standard drops observed with co-current rotation with P_{RF}

- **a)** Shot 1150901021
- **b)** Shot 1150901008

1.2MW, 0.8 MA, low density
1.2MW, 0.8 MA, high density
A Laser Blow-Off (LBO) system is being developed for DIII-D

• LBO in DIII-D will allow cross-machine comparison of cold-pulse experiments

• Differences between “non-local” and “standard transport” cases with suite of fluctuations diagnostics at DIII-D

• ECH heat pulses and LBO cold pulses comparison using perturbative transport analysis techniques

*Routine operation of LBO on DIII-D expected for FY18
Summary and Future Work

New interpretation of T_e inversions and mixing phenomena was needed:

- I_p and P_{ICRF} decorrelate “non-local effects” and intrinsic rotation reversals
- At high plasma current, temperature inversions persist at high density
- Transition to standard transport behavior is not abrupt

In progress – *Can a local turbulence model reproduce quantitatively temperature inversions?*

- Investigate ion channel \Rightarrow Importance of v_{ie} and $\frac{T_i}{T_e}$ stabilization terms
- Examine changes in stiffness, χ_e^{inc}, in transitions to standard behavior
- Use of reduced models for turbulent transport (TGLF)

Near future

- Cross-machine comparison (DIII-D & C-Mod)
- Heat pulse – cold pulse comparison \Rightarrow perturbative transport techniques