Full Wave Simulations of Fast Wave Mode Conversion and Lower Hybrid Wave Propagation

J. C. Wright and P. T. Bonoli

Massachusetts Institute of Technology
Plasma Science and Fusion Center

E. D’Azevedo, D. B. Batchelor,
L. A. Berry, and E. F. Jaeger

M. Brambilla and F. Meo, IPP-Garching

C. K. Phillips and A. Pletzer,

November 4, 2003

Presented at 45th APS-DPP in Albuquerque
Fast, High Resolution Simulations are needed.

- Wave Physics
 - Modeling of Mode Converted Ion Bernstein Waves (IBW), Ion Cyclotron Waves (ICW), and Lower Hybrid (LH) Waves
 - Coupling to Antenna, Fokker-Planck Codes, Transport

- Experimental Modeling
 - Accurate Representation of Experimental Equilibria
 - Sufficient Resolution for Model Convergence, Advanced Scenarios

⇝ Algorithm Enhancements to TORIC
 - Parallelization of solution and post-processing (power and current deposition) - extends resolution and speed.
 - EFIT Equilibria - using the NTCC module, I2MEX.
Coordinates are aligned to Flux Geometry for Efficiency

EFIT for Alcator C-Mod.

Showing contours of constant flux, \((\psi)\), and poloidal angle, \((\theta)\).

TORIC decomposition is spectral in \(\theta\) and toroidal angle \((\phi)\) and finite elements in the flux dimension:

\[
E(x) = \sum_{m} E_m(\psi) \exp(im\theta + in\phi)
\]

with toroidal axisymmetry assumed.
TORIC is a Finite Larmor Radius Full Wave Code

- **TORIC** uses an FLR model for the plasma current response, \(J^P \).
- The antenna is modeled as a current sheet, \(J^A \), of a given poloidal distribution, radial location, and toroidal mode.
- It solves Maxwell’s equations for a fixed frequency with a linear plasma response in a mixed spectral-finite element basis.

\[
\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \left\{ E + \frac{4\pi i}{\omega} (J^P + J^A) \right\} \quad \leftrightarrow \quad E(x) = \sum_m E_m(\psi) \exp(i m \theta + i n \phi)
\]

- **TORIC** uses the Swanson-Colestock-Kashuba approximation for the plasma response to the RF. The plasma current, \(J^P = \int \sigma(x,x') \cdot E(x) \), is in general an integral response. In **TORIC**, contributions through second harmonic are retained in the conductivity, \(\sigma \).
The TORIC Dielectric Model

- The TORIC dielectric models includes IBW, ICW, FW, and LH dispersion.

- Resolution needed depends on the specific wave scenario being modeled.

 - MC - presence of IBW implies $k_\perp \rho_i \approx 1$ and if $k_\perp \sim \frac{m}{r}$, then $M_{\text{max}} \geq \frac{1}{\rho^*} \approx 255$, for typical device parameters. ($\rho^* \equiv \rho_i/L$)

 - LHRF - ($\Omega_{ce}^2 \gg \omega^2 \gg \Omega_{ci}^2$), dispersion yields:

 $\frac{\omega_{pe}}{\omega} k_\parallel \sim k_\perp \sim \frac{m}{r} \Rightarrow M_{\text{max}} \sim 1000$

- For IBW, the imaginary part of the FLR σ, is modified with damping calculated from the full plasma conductivity with all orders of $k_\perp \rho_i$ and Ω_i retained.
TORIC’s Large Matrix can be inverted efficiently

\[\mathbf{A} \cdot \mathbf{E} = \mathbf{J}_A \] where \(\mathbf{A} = \begin{pmatrix} \mathbf{D}_1 & \mathbf{U}_1 & 0 & 0 & 0 \\ \mathbf{L}_2 & \mathbf{D}_2 & \mathbf{U}_2 & 0 & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \mathbf{L}_{Nm-1} & \mathbf{D}_{Nm-1} & \mathbf{U}_{Nm-1} \\ 0 & 0 & 0 & \mathbf{L}_{Nm} & \mathbf{D}_{Nm} \end{pmatrix} \]

- Discretizing the BVP produces a matrix equation. The blocks, \(\mathbf{L}, \mathbf{D}, \) and \(\mathbf{U} \) are each dense matrices of size \(O(6Nm)^2 \).
- The individual \(3N_r \) blocks are distributed across the processors and inverted using (SCA)LaPack to do an \(\mathbf{LU} \) decomposition.
- Processor memory limitations on simulation sizes are removed by using an out-of-core technique in which block inverses are stored on local disks.
Parallel Performance allows the Exploration of New Physics Regimes

- Non-rigorous comparison of serial and parallel run times with Marshall (the PSFC-MIT theory Beowulf cluster).

<table>
<thead>
<tr>
<th>N_m</th>
<th>Time(hours)</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>10</td>
<td>Killeen 1 pc - vector SV1 CRAY</td>
</tr>
<tr>
<td>255</td>
<td>9.5</td>
<td>Marshall 1 pc - 2 GB Athlon 1.2 GHz</td>
</tr>
<tr>
<td>511</td>
<td>won’t fit</td>
<td>Marshall 1 pc</td>
</tr>
<tr>
<td>127</td>
<td>0.11</td>
<td>Marshall 32 pc (16 nodes)</td>
</tr>
<tr>
<td>255</td>
<td>0.78</td>
<td>Marshall 32 pc</td>
</tr>
<tr>
<td>511</td>
<td>3.6</td>
<td>Marshall 32 pc</td>
</tr>
<tr>
<td>1023</td>
<td>25.5</td>
<td>Marshall 48 pc</td>
</tr>
</tbody>
</table>
15 Poloidal Modes are insufficient to resolve MC Layer

- \(N_m = 15 \) for \(\text{D}(47\%) - \text{He}^3(24\%) - \text{H}(5\%) \) mode conversion case.

- Proper radial localization in a vertical layer IS NOT captured. Magnification of the layer shows a tendency to follow flux surfaces.

- Spurious minority damping \(\rightarrow \) power balance of 85% ions and 15% electrons. But, 1D fullwave and experiment predict mostly electron damping.
Power Spectrum measures Convergence at Higher Resolution

- $N_m = 127$ mode conversion case still has $\sim 10\%$ of peak amplitude in edge spectrum.
- Mode Conversion Region occurs at $\rho \approx 0.5$
- This verifies the convergence of the spectral expansion in the MC regime.

- $N_m = 511$ spectrum residual is $\approx 0.1\%$ even on outer flux surfaces.
At Higher Resolution, the Mode Conversion Layer is resolved

- At $N_m = 511$ the MC layer is well localized.
- Spurious damping is eliminated and about 88% of power is in the electron channel.
Dependence on 3He in C-Mod is improved.

- The higher resolution runs capture the trend of power deposition with increasing 3He concentration.
- At higher 3He concentration single pass absorption decreases.
- The overestimation may be due to power absorbed by the edge shear Alfvén resonance - a mode too small to be captured by the simulation.
Mode Conversion to ICW and IBW

- Alcator C-Mod discharge with mixture of D-3He-H in (21%-23%-33%) of n_e proportion.
- This scenario has long propagation of the ICW above and below the midplane back toward the low field side.
- The ICW up/down asymmetry due to shifting of k_\parallel is clear (Perkins 1977.)
- Also, note the resolved short wavelength IBW on the midplane.
The IBW Propagation is well Resolved

- The IBW damping model allows the Ion Bernstein Waves to propagate stably.
- Propagation length is in agreement with 1-D models (AORSA-1D and Mets95)
- We can see the planar nature of the propagation along the midplane.
A Comparison with the AORSA Code

- The All ORders Spectral Algorithm Code has been developed at ORNL.

- It retains all orders in $k_\perp \rho_i$ in the plasma response,
 \[J^P = \int \sigma(x,x') \cdot E(x). \]

- The geometry is cylindrical-toroidal, removing the coordinate center from the computational domain.

 \[E(x,y,\phi) = \sum_{n,m,l} E_{n,m,l} \exp(i(k_n x + k_m y + l\phi)) \]

- The fully spectral approach facilitates implementing the all orders conductivity, but results in a fully dense matrix - and a much larger numerical problem.
Features of the MC Region are very similar in the two Codes

- **AORSA** at \(230N_x \times 230N_y\)
- **TORIC** at \(240N_\psi \times 255N_\theta\)

- Both codes are using the same equilibrium from an Alcator C-Mod discharge with mixture of D-\(^3\)He-H in (21%-23%-33%) of \(n_e\) proportion. Note that the location of the three waves and the MC layer are all very similar.
Global power balances differ:

- **TORIC**- 77% P(e)
 22% P(H)
- **AORSA**- 51% P(e)
 47% P(H)

- The **electron power depositions** are qualitatively similar.
- The **ion power depositions** have larger differences.
Differences in Power Deposition have two possible Causes

- **AORSA-1D** at twice the horizontal resolution \((N_x = 500)\), has a power balance nearly the same as TORIC in 2D.

- The validation of TORIC’s IBW damping model still remains - though the IBW accounts for only a few % of total electron damping in this case.

- It should be noted for parameters with smaller \(k_\parallel \rho_i\), such as MC in DIII-D, AORSA has demonstrated convergence in 2D.
TORIC has been implemented in the LHRF Regime and initial results are encouraging

- TORIC has been run in the ICRF regime with up to \(N_m = 1023 \times N_\psi = 480 \). This is the resolution required to resolve the slow LH wave.

- The conductivity operator has been rewritten to be valid for \(\Omega_{ci}^2 \ll \omega^2 \ll \Omega_{ce}^2 \).
 - Unmagnetized ions - analytically equivalent to \((k_\perp \rho_i)^2 \to \infty \) limit.
 - Strongly magnetized electrons - \((k_\perp \rho_e)^2 \ll 1 \)

- Presently the code couples to the FW polarization in the LHRF regime \((E_\parallel = 0 \text{ at antenna}) \)

- Work is underway to modify the boundary conditions to couple to the slow wave \((E_\parallel \neq 0 \text{ at antenna}) \)
• **TORIC** has resolved the FW polarization at LH frequencies, \(\omega = 4.6 \) GHz, \(n_\phi = 240 \).

• The power deposition profile is that of the fast wave. Damping strength follows the plasma beta and shifts as the central temperature is changed.

• FW coupling is also consistent with the dispersion relation.
Conclusions

1. Well converged simulations of mode-conversion scenarios are now routine, and provide a fast, flexible tool for studying current and flow profile control through mode-conversion.

2. We can model advanced scenarios such as ITER or burning plasmas with the new resolution capabilities. Coupling to other codes such as RANT3D to study antenna coupling, or function as a module in the TRANSP code suite for studying MC effects on transport.

3. TORIC has sufficient resolution and the proper dielectric for lower-hybrid full wave simulations. Questions such as the role of wave focusing and diffraction in LH spectral broadening may yield new insights to the full wave model.