Non-axisymmetric Field Effects on Alcator C-Mod

Presented by:
Stephen M. Wolfe

on behalf of

I. H. Hutchinson, R. S. Granetz, J. E. Rice, A. E. Hubbard (MIT PSFC),
A. Lynn, P. Phillips (U. Texas FRC),
T. C. Hender, D. F. Howell (UKAEA, JET),
R. J. La Haye, J. T. Scoville (GA, DIII-D)

46th Annual Meeting of the
Division of Plasma Physics
Savannah, GA
Nov 15, 2004
Error field induced locked modes can limit tokamak performance

- Resonant error fields of the order of $10^{-4}B_T$ can destabilize non-rotating tearing modes, leading to loss of confinement, disruptions.

- ITER may be susceptible, particularly the low-density ohmic target plasma, due to low rotation, uncertain size and field scaling.

- Experiments on C-Mod improve predictive capability, demonstrate mode suppression.
2/1 stationary mode typically observed

- Theory predicts sensitivity to resonant (2,1) field $\frac{B_{mn}}{B_T} \propto \omega_0 \tau_A \left(\frac{\tau_{rec}}{\tau_v}\right)^{1/2}$
- $m = 1, 3$ Sidebands contribute through toroidal coupling, viscous effects

Island growth seen on magnetics, T_e Profile

Flattening observed on T_e near $q=2$
C-Mod Non-axisymmetric coil set used to investigate locking physics, extend operation

- Mounted on concrete igloo above and below midplane horizontal ports
- Location chosen for accessibility for quick installation in 2003
 Affects mode spectrum and penetration time.
- Seven (of 8) coils installed for 2003, 2004 Campaigns
A-coil can be configured to vary mode spectrum

Helical mode structure defined in straight field line geometry

\[B_{mn} = \frac{1}{2\pi^2} \int_0^{2\pi} d\phi \int_0^{2\pi} d\hat{\theta} B_\perp(\phi, \hat{\theta}) e^{-i(n\phi + m\hat{\theta})}, \]

\[\hat{\theta} = \frac{1}{q} \oint dl \frac{B_\phi}{RB_p} \]

- Can obtain \(B_{21} \sim B_{11} \) but typically (1,1) component dominates
- Positive m resonant helicity
 - Either handedness configurable
- \(B_{31} \ll B_{21} \), higher modes negligible
- 2/1 complex phase (toroidal orientation) varies with configuration
- Sideband orientation basically aligned with 2/1
Locking boundary in complex B_{21} plane identifies threshold and intrinsic error field

For constant plasma conditions, use different A-coil configurations to map stable vs unstable values of applied field

- A circle fit to the boundary of the unlocked (stable) region has radius equal to the effective threshold $|B_{\text{lock}}|$, and center opposite $B_{\text{intrinsic}}$

- For $B_T = 4.1$ T, $I_p = 0.6$ MA, $\bar{n}_e \approx 5 \times 10^{19} m^{-3}$ we find $B_{\text{lock}} \approx B_{\text{intrinsic}} \approx 0.35 mT$, $\phi_{\text{intrinsic}} \approx -135^\circ$
Locked mode suppression and generation by A-coil

- Ohmic 1MA 5.4T plasmas
- Intrinsic locked mode threshold (magenta) at $\bar{n}_e \approx 1.1 \times 10^{20} m^{-3}$
- A-coil allows stable operation (black) to $\bar{n}_e < 0.4 \times 10^{20}$
- Reduction in density implies good error field cancellation
- In opposite polarity (green) locking induced at 1.7×10^{20}

Identifies error field in third quadrant
Sources of Intrinsic Error Fields

Initial Experiments with the non-axisymmetric correction coils indicated the presence of 2/1 error fields in the range of a few 10^{-4}T oriented to the third quadrant. A number of possible sources of this error field have been considered.

- **“Designed-in” non-axisymmetric current paths**
 Effects calculated for:
 - TF Bus
 - OH Solenoid Layer-to-Layer Transitions
 - EF (Ring Coil) Current feeds – local fields at sensors, negligible at plasma
 - OH bus system ($<10\%$ of winding effect)
 - The D- and E-port ICRF antennas short circuit (~ 1cm thick Inconel) path across adjacent horizontal ports ($\lesssim 10^{-5}$ T)

- **Inadvertent Positioning or Manufacturing Errors in the PF System**
 - Infer from measurements
Calculations based on “As Built” Drawings indicate that the TF Bus and Layer-to-Layer radial transitions in the OH1 Solenoid each contribute 1 to 2×10^{-4}T of 2/1 field perturbation for typical currents.

- 2/1 perturbations all in the third quadrant
- TF bus perturbation strongly in resonant helicity
- OH1 sideband phase in first quadrant
Analysis of PF Coil Displacements (Tilts and Shifts)

- Individual PF coils energized on successive shots
- Toroidal asymmetries measured using *difference signals* of standard equilibrium diagnostics (BP loops)
- PF positioning errors modeled as rigid (n=1) shifts and tilts of each PF coil*
- Need to fit differential loop gains to better than original calibration uncertainty ±0.5%
- Discrepancies in placement or orientation of the sensor loops mimic PF coil position errors. *Differential* displacements and tilts of sensor pairs in the poloidal plane also fitted as part of the model.

The final analysis consists of a 663×248 linear least-square regression

Data: 13 pulses \times 51 difference signals between toriodally spaced loops

Model: 11 PF Coils \times 4 tilt and shift parameters (\sin and \cos components)
51 Gain/Calibration discrepancies
3 \times 51 relative sensor displacement and tilt discrepancies (R, Z, θ).
Solved by Truncated SVD, with 240 of 248 principal vectors being retained.
$\chi^2 = 347$ for 423 degrees of freedom.

- Results plausible with respect to assembly tolerances
- Inferred mis-position of OH1, EF3L, EF2L coils produce a few $\times 10^{-4}$T of $m = 1 - 3$ on a typical shot
Intrinsic error field based on source analysis is in the mTesla range

- Sideband orientations are not aligned with 2/1 mode (1/1 is nearly opposite)
- A-coil sidebands are aligned, so not possible to compensate full intrinsic spectrum
- Error field orientations are relatively constant over a wide range of operating conditions.
Suppression of Locked Modes Observed with Applied field counter to inferred Intrinsic Error

- Intrinsic error increases in time due to OH1 terms
- A-coil reduces net $|B_{21}|$ from 0.6 to $\sim 0.2\text{mT}$ (and reverses its polarity)
- Experiment consistent with model of source terms, locking threshold around 0.4 mT
Overcompensating the intrinsic error field induces transitory locked mode

- Mode locks shortly after maximum of $|B_{21}|$
- Increasing oppositely-directed intrinsic 2/1 field reduces net 2/1 below threshold
- Net 1/1 field is large and parallel to 2/1
Locking map determines density dependence of threshold perturbation

• Data at 5.4 T, 1 MA, \(q_{95} = 3.9 \) fit to \(B_{21} \approx C \bar{n}^{\alpha_n} \)
• Fit \(C, \alpha_n, \bar{B}_{\text{intr}} = (\bar{B}_{21} - \bar{B}_{\text{app}}) \)
• Exponent \(\alpha_n \approx 1 \) same as previous experiments
• \(C \approx 4.8 \times 10^{-24} \) somewhat smaller than would be extrapolated from JET, DIII-D

\[
\frac{B_{\text{lock}}}{B_T} \propto n^{\alpha_n} B^{\alpha_B} q^{\alpha_q} R^{2\alpha_n + 1.25\alpha_q}
\]

• Coordinated experiments (matching shape, sidebands,…) undertaken
C-Mod data spans the ITER field

- Locking threshold $B_{21}/B_T \sim 10^{-4}$ similar to larger (and smaller!) lower field experiments*

- C-Mod field scaling $(\alpha_B \approx -0.6 \pm 0.6)$ uncertain, may be weaker than JET/DIII-D, definitely not as strong as old Compass results

- Projection to ITER indicates proposed error field compensation system (correction to 2×10^{-5}) should be adequate

R. J. Buttery, *et al.*, Nucl. Fusion **39** 1999

* Solid: $nR/B = (0.2 \pm 0.3)$
Non-dimensional identity experiment carried out with JET, DIII-D*

- Match non-dimensional plasma parameters
 - na^2, $Ba^{5/4}$ constant
 - Ohmic heating constraint causes $Ta^{1/2}$ to also scale
 - Geometry matched (LSN), $q = 3.2$

- C-Mod parameters
 $B = 6.3T$, $I_p = 1.3MA$
 $1 < \bar{n}_e < 4 \times 10^{20}m^{-3}$

- Match poloidal mode spectrum of JET EFCC coil
- Helical mode spectrum in second and fourth quadrant
- Significant misalignment with (model) intrinsic error field
Comparison with JET/DIII-D tests
non-dimensional identity

Identity experiments† (same $\rho^*, \nu^*, q_\psi, \beta$) should have identical B_{21}/B_T, validating extrapolation in size to ITER by $\alpha_R = 2\alpha_n + 1.25\alpha_B$

- Total C-Mod B_{21} including intrinsic field from source model consistent with bounds from raw data
- JET points (scaled to C-Mod units) agree within error bars
- DIII-D data disagree by factor ~ 2
 Reasons under investigation

†See Howell: CP1.020 (M pm); Also Scoville: NP1.008(Th am)
A-coils have significantly expanded C-Mod operating space

- Without error field correction, locked modes limit operation

![C-Mod Operating Space](image)

Locked - No Acoil
Unlocked - No Acoil

\[
\bar{n}_e \approx 0.04
\]

Enables extension of physics studies to higher \(\beta\) (high current, \(I_N\)), lower \(\nu^*\) (low density)
A-coils have significantly expanded C-Mod operating space

- Without error field correction, locked modes limit operation
- Use of A-coil to compensate intrinsic 2/1 field results in increase in current to 2MA
- Minimum locking-stable density at 1MA reduced from ~ 1.2 to $< 0.3 \times 10^{20}m^{-3}$ ($\frac{\bar{n}}{(I/\pi a^2)} \approx 0.04$)
- Enables extension of physics studies to higher β (high current, I_N), lower ν^* (low density)
Suppression of locked modes allows increase in current to 2MA†

- A-coil programmed to compensate calculated intrinsic (2/1) error field
- No locked mode signatures through current flattop
- Locked mode appears in rampdown, after A-coil ramps down

†See Hutchinson JO3.002 W pm
Summary

- Comparison of C-Mod results with larger (and smaller) tokamaks indicates relatively weak scaling of effective error field sensitivity with size, field.

- Test of non-dimensional identity in threshold should permit more confident extrapolation to ITER.

- Evaluation of intrinsic error fields using *in situ* equilibrium magnetics diagnostics consistent with results of plasma experiments.

- Successful error field correction using simple external coilset substantially expands accessible operating space.