C-Mod Plasma boundary program

General program description
Transport
Boronization studies
Divertor
D retention in molybdenum
Dust
ITPA contributions
Summary

Presented by B. Lipschultz
Contributions from B. Labombard, S. Lisgo, J. Terry, D. Whyte, S. Zweben & C-Mod group
C-Mod attributes lead to a capability to study important (and probably unique) aspects of edge physics

• 2-8 Tesla magnetic field (ITER 5.3 T)
 ■ High parallel power density (≤ 0.5 GW/m² approaching that of ITER)
 ■ High density
 • Short neutral mean free paths in SOL and divertor ideal for accessing ITER regimes (difficult or impossible for other tokamaks)
 ◆ SOL opacity to neutrals and impurities - affecting fueling and impurity screening
 ◆ Tests of divertor neutral viscosity, i-n and n-n collisions in models
 ◆ Divertor radiation transfer - affecting the ionization/recombination balance and detachment
 ■ Divertor plasma densities spanning that of ITER

• High-Z Plasma Facing Components (ITER Be/C/W initially, all-W later?)
 ■ D/T retention
 ■ Effects of high-Z PFCs on the core plasma and operational experience
 ■ Conditioning experience with high-Z PFCs

C-Mod’s parameters, materials and studies bring breadth to the US (and International) program
C-Mod Boundary physics program emphases

• Combining C-Mod unique characteristics with the goal of advancing the tokamak concept brings emphases on
 - Edge plasma transport
 - Our primary emphasis because it is the determining factor for heat and particle loadings, impurity sources and transport
 - Neutral physics affecting core, divertor and edge plasmas
 - Impurities (sources, effects on core)

 • GOAL: Develop predictive capability scaleable to ITER & reactors

• We also identify and develop hardware and operational techniques in support of advancing the tokamak concept
 - Propose and develop high heat flux handling, particle and impurity control methods
C-Mod boundary transport research has several emphases, rooted in understanding SOL transport

Current transport descriptions are very inadequate, giving rise to large uncertainties in

- Heat load profiles for divertor and walls (and surface lifetime)
- Impurity sources and effect on core plasma
- T retention processes and removal techniques

We need better measures, empirical and physics-based, of transport magnitude/scaling
The SOL appears to have different regions with different transport

- The regions ‘near’ and far from the separatrix exhibit different characteristics
 - Far SOL
 - High turbulence levels, convective transport
 - Transport independent of local parameters
 - Near SOL (one density e-folding length)
 - Less turbulence and less convective
 - Cross-field transport dependent on local ν^*

- Picture emerging
 - Plasma filaments intermittently ‘peel away’ from the edge of the steep-gradient, near SOL region and freely propagate towards the wall.
 - Radial ion fluxes, and wall recycling, CAN compete with parallel flow to the divertor
Far SOL: Blob/filament propagation studies

• Filament size (∥B & ⊥B) and dynamics
 - Several methods utilized
• Scaling and inter-machine comparisons of radial propagation are present emphasis (IEA/ITPA DSOL-15)

• Plans to expand to TJ-II, AUG, DIII-D, JT-60U
• Plans for comparisons of \(v_r \) with theory/modelling ongoing
 - Riso (Garcia/Naulin)
 - Lodestar (Myra/D’Ippolito)

<table>
<thead>
<tr>
<th></th>
<th>NSTX (Zweben)</th>
<th>C-Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{edge})</td>
<td>0.2 - 0.3 T</td>
<td>4.4 T</td>
</tr>
<tr>
<td>(n_{edge})</td>
<td>0.2 - 2x10^{19}/m^3</td>
<td>2 - 20x10^{19}/m^3</td>
</tr>
<tr>
<td>(T_{e,edge})</td>
<td>5-50 eV</td>
<td>20-80 eV</td>
</tr>
<tr>
<td>(L_{pol})</td>
<td>5-9 cm</td>
<td>0.6 - 1.0 cm</td>
</tr>
<tr>
<td>(L_{rad})</td>
<td>2-6 cm</td>
<td>0.7 - 1.5 cm</td>
</tr>
<tr>
<td>(V_{pol})</td>
<td>(\leq 5) km/s</td>
<td>(\leq 1) km/s</td>
</tr>
<tr>
<td>(V_{rad})</td>
<td>(\leq 1-2) km/s</td>
<td>(\leq 1.5) km/s</td>
</tr>
</tbody>
</table>
New studies of ELM dynamics in the SOL

- Precursor oscillation observed - localized in pedestal - growth rate $\sim 1 \times 10^5$/s
- Complex structure observed in a single ELM event
- Collapse in pedestal results in radial propagating “primary” pulse
 - V_r from 0.5 - 8.0 km/s; radial pulse width ~ 0.5 cm
 - Reaches wall before divertor
- “Secondary” pulses follow “primary”

Plans: compare observations with modelling of MHD stability and ELM dynamics (collaboration w/Leonard, Osborne @ DIII-D)
A number of turbulence studies are planned

• Comparison of blobs in limited/circular plasmas with simulations by B. Scott (IPP-Garching)
 ■ Some experimental data already supplied to B. Scott (by PPPL)
 ■ Initial simulations started
• Add new lower-divertor view for more information about filaments (PPPL/MIT)
 ■ H-mode trigger near x-point? Poloidal extent of filaments?
• Radial view for structure parallel to B (PPPL/MIT)
• Purchase additional fast camera (PPPL), probably continuously recording (Phantom 7 or Photron APS-RX)
• Expand informal collaboration with Lodestar (Myra/D’Ippolito) to formal (i.e. PPPL $) for continued work on blob dynamics and density limit physics.
• Implement wide angle view with with fast camera
Near SOL: Critical gradient model appears to be consistent with edge characteristics

- Analytic & 3D transport models identify 2 dimensionless parameters controlling edge transport:
 \[\alpha_{\text{MHD}} \sim q^2 R \frac{\nabla P}{B^2} ; \quad \alpha_d \sim \frac{1}{q} \left(\frac{\lambda_{ei}}{R} \right) \left(\frac{R}{L} \right)^{1/4} \]

- Electro-Magnetic Fluid Drift Turbulence (EMFDT) drives the behavior in models.

- Data suggest that near SOL plasma “self-organizes” toward a critical gradient, dependent on \(\nu^* \):
 - At fixed collisionality (\(\nu^* \) or \(\alpha_D \)), \(\nabla P \propto I_p^2 \) keeping \(\alpha_{\text{MHD}} \) constant.
 - H-mode data follows similar trends but higher gradients (\(\alpha_{\text{MHD}} \)).
 - Pedestal \(\nabla P \) also shows similar \(I_p^2 \) dependencies - pedestal talk.
Magnetic topology also appears to affect attainable pressure gradients

\[\left| \nabla_{\perp} n_T \right| \]

\[10^{24} \text{ eV} \text{ m}^{-4} \]

\[\frac{1}{q} \left(\frac{\lambda_{ei}}{R} \right)^{1/2} \sim \alpha_d \left(\frac{L_n}{R} \right)^{1/4} \]

\[\alpha_{MHD} \]

- Lower-null achieves higher gradients (α_{MHD}) compared to upper-null
- We believe this difference is due to changes in flows in the SOL - another control parameter
- Plans:
 - Extend (α_{MHD}, α_D) studies to higher B
 - New flow and ionization source diagnostics

Note - ($\lambda_{ei}/R)^{0.5}/q$ is a better fit than α_D
Measurements from multiple machines point to a large poloidal flow in the SOL

• Flow along \(B \) towards the inner divertor
 ■ Peaked at the inner midplane
 ■ Likely related to D/C co-deposition at inner divertor
 ■ Dependent on magnetic topology & \(B \) direction

• Difficult for codes to reproduce
 ■ ExB drifts & Pfirsch-Schluter effects reproduce \(B \) dependence but not magnitude or poloidal variation
 ■ Experimental and modelling evidence for strong radial transport @ outboard edge driving parallel flows through pressure balance

• Also evidence of transport-driven flows setting toroidal rotation boundary condition for confined plasma

• Plans: additional flow measurements in the SOL (probes) and pedestal (CXRS).
Flows defined by magnetic AND/OR mechanical geometry - divertor or limited, again connecting to H-mode threshold

• Lower-limited, grazing, lower X-point equilibria have co-current inner SOL flows (not USN or inner-wall limited!)
 - Lower inner divertor recycling in common
 - Each have a low H-mode threshold
 - Flows towards the inner divertor are the consistent characteristic

• Plans:
 - New inner wall probes
 - New probe heads (poloidal and toroidal Mach flows)
 - CXRS (inner and outer edge)
UEDGE modeling of SOL flows is yielding insights into potential drive mechanisms

(A collaboration with A. Pigarov & S. Krasheninnikov, UCSD)

• C-Mod high-field SOL, near-sonic parallel flows, can be reproduced in UEDGE if cross-field transport coefficients have strong poloidal asymmetry\(^1\)

• Cross-field transport at the LFS midplane is predominantly convective; \(V_{\text{conv}}\) (sep) = 6m/s; \(V_{\text{conv}}\) (wall) = 160m/s

LFS/HFS radial transport asymmetry factor of 20:1

Plans (2006-2007)

• UEDGE to be enhanced to handle near DN equilibria (Rognlien - LLNL)

• Model upper/lower x-point and near double-null discharges

• \(\Rightarrow\) determine LFS/HFS transport asymmetry from C-Mod data

\(^1\) A. Pigarov et al., presented at 10th International Workshop on Plasma Edge Theory in Fusion Devices
Inner-wall scanning probe diagnostic will allow detailed investigations of inner SOL plasma flows/profiles

- Two new inner wall scanning probes (WASPs) are to be installed in 2006 (grad student - N. Smick)
 - Probe actuated by embedded coil and ambient magnetic field
 - 4 electrodes \Rightarrow Langmuir/Mach probe
 - Linear plunge motion (+R direction)

- Goals: Record key data in high field SOL (relatively free of ICRF sheath rectification effects):
 - Parallel & perpendicular flows
 - Fluctuations, fluctuation-induced transport
 - \Rightarrow inward pinch?
 - \Rightarrow quasi-coherent mode amplitude in EDA H-mode?
 - Density, temperature, potential profiles

- Prototype tested in 4T field last summer
- Final version to be tested prior to installation (next break)
Advanced, high-heat flux probes to be tested in 2006

- Goal: install on all 4 scanning probe systems
 - Parallel/perpendicular Mach probe geometry
 - Self-shadowing, tungsten electrodes

- Prototype fast sweep I-V probe drive electronics to be tested in 2006 (grad student - L. Lyons)
 - Graduate student thesis project
 - Proof of principle operation in 2006 on A-port probe
 - Voltage sweep rate \sim 1 MHz
 - Record T_e, n_e, Φ fluctuations

- New Langmuir probe array in upper divertor
 - Installed as part of upper divertor/cryopump upgrade
Boronization was a central focus of the 2005 experimental campaign

- At the end of the 2004 campaign
 - The majority of Mo tiles were covered with thick B layers (~6 µm thick)
 - (note: such thick, widespread, layers are also common in carbon PFC tokamaks)
 - All surfaces cleaned of accumulated boron during vacuum break
 - Surface analysis showed B/(Mo+B) dropping from 99% to 10-20%
 - B likely ‘trapped’ in the topography of the surface
- All BN tiles replaced with molybdenum
- Long operational period before boronization to properly characterize un-boronized PFC operation.
Boronization is very important for plasma performance

- Molybdenum is the primary radiator before boronization (no B on walls)
- Fe and Mo fractions approaching 0.1%

- First boronization
 - Large drop in molybdenum & iron
 - Layer wears off in 10s of shots
- Second boronization
 - Molybdenum levels drop further

- Molybdenum radiation rises after each boronization - indications are that small regions (10-1000 cm²) are involved
- Iron radiation stays low after first boronization
 - Long-term coating of most surfaces
Boron coating erosion rate correlates with RF energy injected

• General trend seen after each boronization
 - Radiation low and stored energy high for a period
 - Followed by impurity increases and confinement degradation
 - Confinement degradation occurs at ~ 50 MJ input energy (for RF-heating)
• For Ohmic H-modes the degradation appears not to occur as quickly
 - ~3-4 times as much input energy to achieve the same degradation
 - => enhancement of sheaths in edge may be leading to enhanced erosion and Mo source
There is a clear correlation between higher impurity radiation and degraded confinement

- Mo radiation losses lead to a cooler pedestal
- Profile stiffness causes T_e and P_e to decrease across the entire profile
 - Lower stored energy and H-factor
- Reducing Mo (replaced w/B) leads to hotter pedestal and higher H-factor
 - Molybdenum radiation efficiency in C-Mod like W radiation in ITER
Boronization has a short-term effect on recycling and D retention

After an overnight boronization
- Amount injected to achieve the desired density very small
- Walls are fueling (R > 1)
- Gas seems to be coming from PFC surfaces near the midplane

- The recycling effects are mostly worn off after 50 shots
 - PFC surfaces shift from dominant fueling to almost pumping
- Long after boronization PFC surfaces pump
Boronization coatings (gain or loss) lead to dramatic effects in a high-Z tokamak

• Comparison of boronization on carbon and molybdenum PFC tokamaks shows similarities and differences

<table>
<thead>
<tr>
<th></th>
<th>Carbon PFCs</th>
<th>Molybdenum PFCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boronization effect</td>
<td>Lowers O, Fe, Ni, C
Increases B
Lowers recycling coef. (R<1)?</td>
<td>Lowers Fe, Mo (O already low)
Increases B
Increases recycling coef. (R>1)</td>
</tr>
<tr>
<td>Impurity reduction</td>
<td>10s of shots for C
Longer for Fe, Ni</td>
<td>10s of shots for Mo - small areas
Longer for Fe</td>
</tr>
<tr>
<td>time scales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect of the layer</td>
<td>Small - B replaced by C, radiation low & outside the pedestal - energy confinement still high.</td>
<td>LARGE - B replaced by Mo, radiation increases strongly, energy confinement degrades</td>
</tr>
<tr>
<td>wearing off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• C-Mod experience raises concerns for ITER/reactor regarding tungsten usage
Between-discharge boronization: a tool for finding impurity sources & optimizing operation

- Initial development of between-discharge boronization
 - Maintain constant conditions
 - Determine the most important molybdenum source location

- Scanned the boronization discharge resonance across the chamber
 - Most effective in reducing radiation @R=70
 - Effect lasts ~1 discharge consistent w/overnight boronization (which lasts longer)

- More experiments planned
 - Better locate Mo sources
 - Optimize speed and effectiveness
 - locally apply boron layer where needed

10’ period ~ 1/30 of overnight boronization period

![Graph showing PRAD (kW) before H-mode vs. resonance center (cm)]
Other avenues being pursued to identify important Mo sources & improve plasma performance

• The preponderance of data point to Mo sources in localized regions (toroidally, poloidally) and not at the divertor strike points. Possibilities include
 - Leading edges on top surface of outer divertor
 - Outer limiters, ‘gusset’ tiles…

• Diagnostic improvements being considered for next vacuum break
 - More spectroscopic views of the suspected surfaces
 - Cameras filtered for Mo I (source rate measurement covering most areas of chamber)
 - Quartz-Microbalance (determine the boronization deposition profile and erosion rate)
 - Coat suspected tiles with different elements as markers that will show up in plasma

• Experiments during the coming 10 week campaign
 - Continued inter-shot boronization development
 - More detailed studies of optimal deposition location
 - Enhance speed of process to minimize impact on shot cycle
 - During-shot boronization will be tried
 - Compare Mo I source magnitudes with different antennae, powers and locations.
Retention of injected gas larger than expected

• Tungsten is projected for use in a reactor due to
 - Nuclear damage in comparison to C
 - T retention in comparison to C (orders of magnitude lower)
 - BUT, further work is needed in the lab and tokamak to determine whether these advantages hold true.
• Molybdenum - very good proxy for W for H/D retention
• Initial C-Mod shot retention measurements of injected D₂
 - approaching 50%
 - Density threshold for high retention
 - Retention appears to decrease for constant shots
 - Dependent on strike point position & pulse length
• Further experiments needed
 - Understand saturation and density dependence
 - Identify location of pumping surfaces

Program Advisory Committee, January 25-27, 2006
Parallel effort to understand the process with laboratory experiments started

- Both at PISCES and U. Wisc. (DIONISOS) facilities
 - Samples from C-Mod irradiated with D plasmas (varying flux, fluence) and the D retention amount and depth distribution analyzed
- U.W. analysis of tiles from C-Mod for campaign-integrated D retention
 - D retention on plasma facing surfaces
 - D retention on tile sides
 - Can be substantial (~20% of overall D retention)
 - More difficult to remove (implications for ITER)
 - Some hints at deposition process

- C-Mod data in this area important for the ITER decision to proceed with high-Z first wall.

Plans - simulate C-Mod fluxes/fluence and temperature range with DIONISOS plasmas

Program Advisory Committee, January 25-27, 2006
C-Mod presents a unique opportunity to study hydrogenic retention (H/D/T) and high-Z material migration

- New diagnostic station being designed
 - Quartz-microbalance (next vacuum break)
 - Studies of deposition during boronization and plasmas
 - ARRIBA (Alpha Radioisotope Remote Ion Beam Analysis) - longer term
 - In-situ ion beam analysis of surfaces
 - Depth-resolved erosion/deposition, material mixing
 - H/D retention & recovery
 - Langmuir probes
 - Local characterization of plasma interacting with surfaces under study
Technique for removal of D/H retained in surfaces explored with initial success

Idea - concentrate heat flux locally to raise surface temperature - outgas H/D

- Disruptions release more gas than ‘regular’ shots or wall conditioning
- H removed through isotope exchange in the surface (HD as opposed to H₂)

- Gas recovered dependent on energy density as well
- Threshold increased over time
 - D stored deeper into surface

- More experiments planned
C-Mod divertor measurements central to benchmarking the ITER divertor prediction

• Two aspects of the ITER divertor modeling are being benchmarked against C-Mod data:
 ■ Lyman alpha trapping - potentially strongly affecting the ionization balance and access to detachment
 ■ Short neutral mean free path regimes - strongly affecting the neutral balance and pumping predictions

• C-Mod is ideally suited for this testing
 ■ Closest to ITER in both normalized and actual above physics parameters
 ■ Data available
 ■ Funding of interpretive modelling initiated 1 year ago (Lisgo, U. Toronto)
 ■ Part of IEA/ITPA DSOL-5 with JET
 ■ One of 5 US ITER physics tasks
 ■ First, low-density case results => several processes important
The newest modeled cases span a range of dimensionless and dimensional parameters

- Three cases now have initial models
 - Low density - $P_{\text{DIV}}=25$ mT (outer div. attached)
 - Med density - $P_{\text{DIV}}=75$ mT (outer div. detached)
 - High density - $P_{\text{DIV}}=150$ mT (x-point MARFE)
- The neutral densities span the ITER range =>
 - D_2-D_2 collisional mean free paths (1.3-7.8 mm), small compared to the divertor volume
 - D^+-D_2 collisional mean free paths also 1-8 mm, small compared to divertor fan
 - Photon absorption mean free paths ~ 1 mm
- Each < relevant dimension => excellent test of codes

Next steps
- Finish interpretive modelling
- Move on to self-consistent predictive modelling
Dust studies initiated

• Dust is studied for a number of reasons
 ■ Safety problems
 ■ Plasma impurities (plasma performance)

• Initial work concentrated on diagnostics
 ■ Dust characterization during vacuum breaks in collaboration with INEL
 ■ Dust quantity and dynamics during shots
 - Image analysis
 - MIE scattering

• Plans
 ■ Continued development of the above
 ■ Try to ascertain the origin of dust & how it affects the core plasma
Experiments in 2005 have resulted in an improved (and novel) upper cryopump concept

Goal: pumping for core and edge studies that separates heat and particle handling functions

- Experiments showed that the previous concept would have a high sensitivity to secondary strike-point location (~x3 variation in pressure)
- New ‘pumping slot’ concept
 - Less sensitive to strike-point location
 - Proximity to upper null also improves heat-flux handling
- Status/Plans
 - Tiles and support hardware manufactured
 - Cryopump fabrication & testing in next 3 months; Installation in summer 2006
Tungsten tile development program underway

Goal: ITER relevant tungsten tile development and operational experience

Status

- 12 tungsten rod tiles installed in C-Mod
 - No measurable W content in core
 - Tiles surviving at leading edges
- Design change from rods to lamellae (plates)
 - Simpler, cheaper - currently ITER aim
 - 1st tests at Sandia
 - Mechanical attachment failure
 - Design revised and new tests at Julich
 - TZM bolt holds lamellae together
 - Tests successful for a range of heat loads
- Material bought and design being finalized for a toroidal ring of tiles next break
C-Mod research well-aligned to ITPA high-priority research areas

The C-Mod boundary physics program addresses a number of high priority ITPA issues including:

• *Improve understanding of tritium retention & the processes that determine it.*
 - Understanding D levels on tiles and tile sides for B and Mo
 - Understanding removal of D at low tile temperature

• *Improve understanding of SOL plasma interaction with the main chamber.*
 - Wall flux measurements (‘main chamber recycling’)
 - Impurity influx and screening studies

• *Develop improved prescription of SOL perpendicular transport coefficients and boundary conditions for input to BPX modelling.*
 - Radial flux analysis - transport coefficients
 - Gradient scaling work (near SOL) connection to fluid turbulence theories
 - Dimensionless comparisons scalings of SOL characteristics across tokamaks
 - SOL flows and effect on core
C-Mod is actively involved in coordinated experiments across tokamaks & in support of ITER

• Our divertor/edge scientists seek out collaborations with other tokamaks in order to test ideas or gain new information

• The collaborations are encouraged through the IEA/ITPA framework
 - DSOL-3 ‘Study of radial transport’, B. Lipschultz organizer
 - DSOL-5 ‘Role of Lyman absorption in the divertor’, J. Terry, contributor
 - DSOL-4 ‘Comparison of disruption energy balance and heat flux profile’, D. Whyte, J. Terry, contributor
 - DSOL-11 ‘Disruption mitigation experiments’, D. Whyte organizer, R. Granetz, contributor
 - DSOL-13 ‘Deuterium co-deposition with C in gaps of plasma facing components B. Lipschultz, D. Whyte participants
 - DSOL-15 ‘Inter-machine comparison of blob characteristics’ J. Terry organizer

• The ITER team has requested that the US (C-Mod) advance the understanding of divertor radiation absorption through benchmarking codes - ITER-US subtask 3
Boundary Physics: Summary

• Our intent is to continue to make fundamental contributions with emphasis on the following:

 ✓ Steady state profile transport analysis to understand
 - Role of gradients in determining near SOL transport
 - Poloidal variations, machine scalings (to ITER), role of neutrals
 ✓ Edge flows importance in affecting impurities and the core plasma
 ✓ Turbulence studies
 - Turbulence relationship to large convective transport
 - Improved images/analyses/scalings/simulations & predictive capability
 ✓ Continued H/D retention and removal studies
 ✓ Develop separable divertor particle and heat control functions
 ✓ Optimize high-Z first-wall and divertor for long-pulse & high heat flux operation
 - Understanding boronization and its erosion
 - Development of strategies to extend the boronization layer lifetime