Outlines:

1. Tritium Plasma Experiment (TPE) capability
2. First result of tritium plasma campaign:
 - Imaging plate technique (IP) surface/depth tritium profiles
3. Deuterium retention in tungsten and molybdenum
 - Thermal desorption spectroscopy (TDS) analysis in W
 - Characterization of surface morphology and retention in W
 (next talk by Rob Kolasinski)
4. Summary and future plans
 - Deuterium/tritium retention in neutron irradiated tungsten

Acknowledgements: all FSP support staff and ATR RadCons:
Role of TPE in fusion/PFC community:
- "Tritium" behavior in various PFCs (Mo, W, CFC, Be, n-irradiated materials)
 - Tritium use (T inventory: 15000 Ci ~1.5g)
 - Handling of "neutron irradiated materials"
 - D/T retention in PFCs.
 - T permeation through PFCs
 - T surface/depth profiling in PFCs

Tritium Plasma Experiment:
- Linear type plasma
 - LaB$_6$ source and actively water-cooled target
 - Steady state plasma up to high fluence ($\sim 10^{26}$ m$^{-2}$),
 - High flux ($\sim 10^{22}$ m$^{-2}$s$^{-1}$), surface temp. (300~1000K)
- Tritium use: (0.1 ~ 3.0 %) T$_2$/D$_2$
- Double enclosures for tritium use
 - System piping as primary confinement
 - Glovebox as a ventilation hood (second enclosure)
 - PermaCon box as a third enclosure
 - Ubeds as tritium getter
Tritium Plasma Experiment (TPE) capabilities

Diagnostics and collaborations

in-situ plasma diagnostics:
- Langmuir probe (single probe, PMT)
- Spectrometer (Ocean Optics HR-4000)
- RGA (residual gas analyzer)

ex-situ PSI material diagnostics:

At site (INL - STAR)
- TDS (thermal desorption spectroscopy)
- IP (imaging plate analyzer)
- Optical microscope

In town (INL – Idaho Research Center)
- SEM (scanning electron microscope)
- XPS (X-ray photoelectron spectroscopy)
- AES (Auger electron spectroscopy)

University of Wisconsin, Madison: IBA (ion beam analysis)
- ERD (elastics recoil detection)
- NRA (nuclear reaction analysis)

Sandia National Laboratory, Livermore
- Laser Profilometry for blister height/size
- SEM/AES etc.

Plasma parameters:
- n_e, T_e, V_s, V_p, $p_{\text{impurity}}/p_{\text{D2}}$, $I_{D\alpha}$, I_{D2}

PSI parameters:
- D/T retention
- D depth profile
- T Surface/depth profile
- Grain size
- Element composition (depth profile)
- Chemical states of element
- Blister size/height

Use of tritium (even in trace amount <1 %)
- Enhance the detection sensitivity significantly (by ion chamber or LSC)
- Trace the surface profile easily (by IP)

Sensitivity: $\sim 10^{-12} = \text{ppt}$ (part per trillion)
First result of tritium plasma campaign:

(0.1~0.2 %) T_2/D_2 plasma on Mo and W

(Preliminary results)

- **Tritium profiling by Imaging plate (IP) technique**
 - Surface profile of plasma exposed front surface
 - Depth profile using split sample
 - Polish to remove deposition after TPE exposure

Sample preparation:
- Cut-in-half cylinder sample (split sample)
 - (6 mm diameter and 10mm length)
- Polished:
 - Mirror finished: front surface
 - 1200 grit paper: cross-sectional surface
- Cleaning: Ultra-sonic bath
 - Acetone, Ethanol, DI H$_2$O for 5min/each
- Annealed at 873K for 1 hours (<1x10$^{-7}$ Torr)

TPE exposure conditions:
- Ion flux: ~ 5.0×10^{21} m$^{-2}$s$^{-1}$
- Ion fluence: ~ 3.5×10^{25} m$^{-2}$
- Ion energy: ~ 70 eV
- Sample temperature: 393K and 573K
- 0.2 % T_2/D_2 plasma

Samples: (W and Mo)
- Pure (polycrystalline) tungsten
 - 99.99 at. % purity from Allied Material Corp.
- Pure molybdenum
 - 99.95 wt. % purity from Nilaco Corp.

After polishing

Samples provided by Teppei Otsuka (Kyushu Univ.)

2009 July 9
First result of tritium plasma campaign: (cont’d)

(0.1~0.2 %) T_2/D_2 plasma on Mo and W

(Preliminary results)

- **Front surface**
 - Surface T distribution after 2h TPE @ 573 K
 - PSL intensity ~ Relative T concentration
 - Difficult to quantify T concentration
 - Penetration (detection) depth depends on material/impurity/surface oxide etc..
 - Penetration depth: < 1 µm
 - Resolution: 25 µm/pixel

- **Cross-sectional surface**
 - IP intensity ~ Relative T concentration
 - Sample: 8Cr2W, SS316, Mo, W
 - W mask

2009 July 9
PFC meeting@ MIT

Provided by Teppei Otsuka (Kyushu Univ.)
Deuterium retention in tungsten and molybdenum

Sample Preparation / Plasma Exposure Conditions

Sample preparation:
- Pure (polycrystalline) tungsten
 - 99.9999 wt. % purity from PLANSEE
- Pure molybdenum
 - 99.95 wt. % purity from Eagle Alloy Corp.
- 1 inch diameter disc (1mm thickness)
- Polished: Mirror finished
- Cleaning: Ultra-sonic bath
 - Acetone, Ethanol, DI H₂O for 5min/each
- Annealed at 1273K for 1 hours (<1x10⁻⁷ Torr)

TPE exposure conditions: D₂ plasma
- Ion flux: ~ 1.1x10²² m⁻²s⁻¹
- Ion fluence: ~ 8.1x10²⁵ m⁻²
- Ion energy: ~ 70 eV
- Sample temperature: (400~1000) K
Deuterium retention in tungsten and molybdenum (cont’d)
Thermal desorption spectroscopy (TDS) analysis in W

\[D\text{ retention peaks around } T_{\text{sample}} \sim 500 \text{ K} \]
- 770 K peak (1.6~1.7eV trap: vacancy cluster) is responsible for higher retention
- Blistering occurs at lower temperature (400~700K)
- Very small retention with 920K peak (2.1eV trap: void)
Summary and future plans

TPE will be focusing on “Deuterium/tritium retention in neutron irradiated sample”

- Completed first tritium plasma campaign (<0.2 % T₂/<D₂)
 - Plan to operate higher concentration T plasma (a few % T₂/<D₂) in late 2009

- Continue on D/T retention in Mo and W
 - Setup dual mode TDS retention measurements (both deuterium/tritium)
 - Investigate surface morphology in single crystal W
 - Investigate surface profiling in He-D₂ exposed W (W fuzz) by IP
 - Obtain T depth profile by cutting Mo and W in half after TPE exposure

- Deuterium/tritium retention in neutron irradiated tungsten
 [TITAN US-Japan collaboration]
 - Irradiate the samples (W, Mo, Ni) at HFIR (High Flux Isotope Reactor), ORNL (0.1, 1.2, 9.6 dpa @ 80, 300, 650°C)
 - Completed first set of W samples (at 0.1 dpa, 80 C)
 - Plan to test first neutron-irradiated W (0.1 dpa, 80 C) in Dec. 2009
 [with US domestic collaboration]
 - Could irradiate sample at ATR (Advanced Test Reactor), INL as NSUF

- T retention/permeation experiment (new design)