Poloidal Transport Asymmetries, Edge Plasma Flows and Toroidal Rotation in Alcator C-Mod

Presented at the 16th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices
May 24 - 28, 2004
Portland Maine, USA
Motivation: Strong parallel flows ($M_{//} \sim 0.5$) have been seen in the SOLs of many tokamaks, far from material surfaces...

....yet, the underlying physics has not been fully resolved

Questions:

Do these flows impact SOL impurity transport & screening from core?
...balance of material erosion/deposition in divertor legs (e.g. JET)?

Are SOL flows just a passive, local response?
Or, do they couple to flows in the confined plasma in any significant way?

Focus of this talk:

SOL plasma flow experiments in Alcator C-Mod
- plasma flow pattern
- underlying drive mechanisms
Key Results: A remarkable interplay between ballooning-like transport, parallel plasma flows and toroidal rotation

- A cross field transport-driven plasma circulation loop is evident in C-Mod
 - ballooning-like transport
 - x-point topology sets // flow direction
 - promotes main-chamber impurity migration toward inner divertor

- SOL flows set flow boundary conditions for confined plasma
 - x-point dependent toroidal rotation of core!
 => x-point dependent toroidal rotation of SOL

Surprising result:

- Topology-dependent SOL flow boundary condition may explain sensitivity of L-H power threshold on upper/lower x-point topology!
Outline of Talk

- Profiles & Parallel Flows in High and Low-Field Side SOLs
- Cross-Field Flow Information
- Flux-Tube Particle Balance Analysis
- X-point Dependent Flow Boundary Conditions Imposed on Confined Plasma
- Connection to L-H Power Thresholds & Topology

Diagnostics:

Inner Scanning Probe

Outer Scanning Probe

Inner Wall Probe: N. Smick, P1-56
Inner Wall Doppler: K. Marr, P2-42
Scrape-off Layer Profiles Reveal Transport Asymmetries and Topology-Dependent Near-Sonic Parallel Plasma Flows

Independent of Topology
- Lower average T_e, higher average density on high-field side (inner) SOL
- Lowest T_e are detected by inner probe when facing inner strike-point

Dependent on Topology
- Inner SOL: Near-sonic parallel flow is co-current directed (+) in LSN, counter-current directed (-) in USN
- Outer SOL: Stronger co-current flow in LSN, weaker in USN
Near-Sonic Inner SOL Flows are Connected to Cross-field Transport Asymmetries

$B \times B$

Electron Pressure

RMS $J_{sat}/\langle J_{sat} \rangle$

Toroidal Projection of Parallel Velocity
Near-Sonic Inner SOL Flows are Connected to Cross-field Transport Asymmetries

Inner SOL plasma 'disappears' in Double Null! L_{nT} reduced by factor of 4!
Near-Sonic Inner SOL Flows are Connected to Cross-field Transport Asymmetries

- Inner SOL plasma 'disappears' in Double Null!
 - $L_n T$ reduced by factor of 4!

- Fluctuation levels persistently lower on inner SOL
 - (See: J. Terry, O-9)
 - Consistent with low \parallel transport in inner SOL
Near-Sonic Inner SOL Flows are Connected to Cross-field Transport Asymmetries

Inner SOL plasma 'disappears' in Double Null! L_nT reduced by factor of 4!

Fluctuation levels persistently lower lower on inner SOL
(See: J. Terry, O-9)
Consistent with low transport in inner SOL

Inner SOL // flows are always directed from outer to inner SOL in upper and lower-null, but ~stagnant in double-null
Near-Sonic Inner SOL Flows are Connected to Cross-field Transport Asymmetries

Inner SOL plasma 'disappears' in Double Null!

LnT reduced by factor of 4!

Fluctuation levels persistently lower on inner SOL
(See: J. Terry, O-9)
Consistent with low transport in inner SOL

Inner SOL // flows are always directed from outer to inner SOL in upper and lower-null, but ~stagnant in double-null

Plasma exists on inner SOL because it flows along field lines from outer SOL!
Near-Sonic Inner SOL Flows are Connected to Cross-field Transport Asymmetries

Inner SOL plasma 'disappears' in Double Null!

L_{nT} reduced by factor of 4!

- Fluctuation levels persistently lower on inner SOL
 (See: J. Terry, O-9)
 Consistent with low transport in inner SOL

- Outer SOL flows weaker, co-current, appear *modulated* by topology
 (Location is near poloidal flow stagnation point)

- Inner SOL // flows are always directed from outer to inner SOL in upper and lower-null, but ~stagnant in double-null

⇒ Plasma exists on inner SOL *because it flows along field lines from outer SOL!*
Near-sonic parallel flows, $V_{//}$, on inner SOL appear to be transport-driven, i.e., driven by ballooning-like cross-field transport asymmetries:

$V_{//}$ includes cross-field fluid drift, V^\perp:

\Rightarrow link between Inner SOL flow direction/magnitude and magnetic topology

However, total plasma flow vector, V, includes cross-field fluid drift, V^\perp:

\Rightarrow Need to examine cross-field flow information
Plasma flow direction depends on Upper/Lower Null topology, identical to that seen by Inner Mach Probe

Impurity dispersal pattern is closely aligned with magnetic field line

Inner SOL flows dominated by parallel flow component

Direct evidence of wall-source impurity migration toward inner divertor leg

Outer SOL Plasma Flows: Largely Toroidal Rotation and/or Pfirsch-Schlüter Flow

Outer probe data from matched discharges with normal and reversed I_p & B_T

- Parallel Mach numbers reverse direction when I_p & B_T reverse
- Similar reduction in flow as normalized density is increased

\Rightarrow Consistent with parallel flow arising from co-current toroidal rotation and/or Pfirsch-Schlüter contributions

Case of pure toroidal rotation:

$V_∥ = E_r/B_∥$

Normal B:

Reversed B:

$V_∥$ reverses with B
Outline of Talk

• Profiles & Parallel Flows in High and Low-Field Side SOLs

• Cross-Field Flow Information

• **Flux-Tube Particle Balance Analysis**

• X-point Topology-Dependent Flow Boundary Conditions Imposed on Confined Plasma

• Connection to L-H Power Thresholds & Topology
Data can be Mapped to a "Flux-Tube Coordinate", S, Revealing Transport-Driven Component of Parallel Flow
Data can be Mapped to a "Flux-Tube Coordinate", S, Revealing Transport-Driven Component of Parallel Flow

Definition of flux-tube coordinate, S

Data from matched Lower-Null and Upper-Null discharges

![Diagram showing flux-tube coordinate and data points for Electron Pressure, nTe, Mach Number, M//, and nTe(1+ M//^2/2).]
Data can be Mapped to a "Flux-Tube Coordinate", S, Revealing Transport-Driven Component of Parallel Flow

Definition of flux-tube coordinate, S

- Lower nT_e on Inner SOL

Data from matched Lower-Null and Upper-Null discharges
Data can be Mapped to a "Flux-Tube Coordinate", S, Revealing Transport-Driven Component of Parallel Flow

- Lower nT_e on Inner SOL
- Transport-driven parallel flow from Outer to Inner SOL

Toroidal rotation, Pfirsch-Schlüter flows,appear as offsets to average of ▼ + ▲
Data can be Mapped to a "Flux-Tube Coordinate", S, Revealing Transport-Driven Component of Parallel Flow

Definition of flux-tube coordinate, S

- Lower Null
- Upper Null

- Lower nT_e on Inner SOL
- Transport-driven parallel flow from Outer to Inner SOL
 Toroidal rotation, Pfirsch-Schlüter flows, ...
 ...appear as offsets to average of ▼ + ▲
- Thermal + flow energy ~constant

Data from matched Lower-Null and Upper-Null discharges

Mach Number, $M_{//}$

Electron Pressure, nT_e

$nT_e(1 + M_{//}^2/2)$

Normalized distance along field line, S
Data can be Mapped to a "Flux-Tube Coordinate", S, Revealing Transport-Driven Component of Parallel Flow

Definition of flux-tube coordinate, S

- Lower nT_e on Inner SOL
- Transport-driven parallel flow from Outer to Inner SOL
 Toroidal rotation, Pfirsch-Schlüter flows, ...
 ...appear as offsets to average of ▼ + ▲
- Thermal + flow energy \simconstant

Net flow of plasma out ends of flux tube requires a net particle source into (□) flux tube

Data from matched Lower-Null and Upper-Null discharges

$\Box = 4$ mm

- Electron Pressure, nT_e
- Mach Number, $M_{//}$
- $nT_e(1 + M_{//}^2/2)$

Normalized distance along field line, S
Flux-Tube Particle Balance Analysis: Net Particle Source Profiles Exhibit Ballooning Asymmetry

Probe Data:
- Upper Null
- Lower Null

Model:
- Parallel Mach Number
- Net Particle Source

...conserving particles & \parallel momentum
Flux-Tube Particle Balance Analysis:
Net Particle Source Profiles Exhibit Ballooning Asymmetry

Probe Data:
- ▲ Upper Null
- ▼ Lower Null

Model:
- Parallel Mach Number
- Net Particle Source
 - ...conserving particles & // momentum

A transport-driven plasma circulation loop is implied!

- Cross-field transport overpopulates flux tubes on the low-field side, driving parallel flow
- The resultant circulation loop likely closes via cross-field fueling near the inner divertor region
Flux-Tube Particle Balance Analysis:
Net Particle Source Profiles Exhibit Ballooning Asymmetry

Probe Data:
- Upper Null
- Lower Null

Model:
- Parallel Mach Number
- Net Particle Source
 ...conserving particles & // momentum

A transport-driven plasma circulation loop is implied!

- Cross-field transport overpopulates flux tubes on the low-field side, driving parallel flow
- The resultant circulation loop likely closes via cross-field fueling near the inner divertor region

Flux-tube coordinate, S

Parallel Mach Number

Outer SOL Inner SOL

Note: A separate set of radial fluxes associated with main-chamber recycling and ionization can be superimposed
Outline of Talk

- Profiles & Parallel Flows in High and Low-Field Side SOLs
- Cross-Field Flow Information
- Flux-Tube Particle Balance Analysis

- Topology-Dependent Flow Boundary Conditions Imposed on Confined Plasma
- Connection to L-H Power Thresholds & Topology

Diagnostics:

- Ar17+ X-ray Doppler
- Inner Scanning Probe
- Outer Scanning Probe
- Vertical Scanning Probe
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

Distance Between Primary and Secondary Separatrix (mm)

- Toroidal Projection of Parallel Velocity (km s⁻¹)
- Toroidal Velocity (km s⁻¹)

- Inner Probe □ = 2 mm
- Outer Probe □ = 1 mm
- Core Ar¹⁷⁺ Doppler

- Upper Null
- Double Null
- Lower Null

Ip ⊗ BT ⊗

BxB
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: lower => double => upper-null
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: lower => double => upper-null

- Central plasma toroidal rotation correspondingly shifts more toward counter-current direction
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: lower => double => upper-null

- Central plasma toroidal rotation correspondingly shifts more toward counter-current direction

- Toroidal velocity change is largest on inner SOL => suggests inner SOL flow is responsible for change in rotation of confined plasma!

Transport-driven SOL flows impose boundary conditions on confined plasma
If Transport-Driven SOL Flow/Rotation Paradigm is Correct, Radial Electric Fields in SOL Should Depend on X-point Topology

- transport-driven parallel SOL flows

• Ballooning-like transport leads to a helical flow component in the SOL with *net volume-averaged toroidal momentum*: co-current for lower null, counter-current for upper null
If Transport-Driven SOL Flow/Rotation Paradigm is Correct, Radial Electric Fields in SOL Should Depend on X-point Topology

- transport-driven parallel SOL flows

- Ballooning-like transport leads to a helical flow component in the SOL with *net volume-averaged toroidal momentum*: co-current for lower null, counter-current for upper null

- Being free to rotate only in the toroidal direction, the confined plasma acquires a corresponding **co-current** or **counter-current** rotation increment

Influence on plasma rotation
If Transport-Driven SOL Flow/Rotation Paradigm is Correct, Radial Electric Fields in SOL Should Depend on X-point Topology

- transport-driven parallel SOL flows

- Ballooning-like transport leads to a helical flow component in the SOL with net volume-averaged toroidal momentum: co-current for lower null, counter-current for upper null

- Being free to rotate only in the toroidal direction, the confined plasma acquires a corresponding co-current or counter-current rotation increment

Influence on plasma rotation

• Via momentum coupling across separatrix, a topology-dependent toroidal rotation component, E_r/B, should appear in the SOL

 => Stronger E_r in SOL for lower null
 => Weaker E_r in SOL for upper null
Plasma Potentials Near Separatrix Systematically Increase in the Sequence: **Upper, Double, Lower-Null**

- More positive E_r in SOL near separatrix in **Lower-Null**
 - $E_r/B_\parallel \sim 5$ km/s, a significant fraction of measured change in parallel flow

=> Consistent with an increased co-current plasma rotation in lower-null, arising from transport-driven SOL plasma flows!
Transport-driven SOL flows lead to topology-dependent toroidal plasma rotation (and E_r) near separatrix.

- SOL widths are unchanged; Toroidal rotation $\neq 0$ near wall.

 => Implies **toroidal velocity shear** ($E_r \times B$ shear) near separatrix is:

 stronger | weaker

$L-H$ transition is thought to involve velocity shear suppression of plasma turbulence.

=> May explain why the L-H power threshold is *lower when $B \times B$ is pointing toward the x-point!*
L-H Transition Coincides with Plasma Rotation Attaining Roughly the Same Value, Independent of Topology

Input power level to attain L→H depends on x-point topology

Ohmic+ICRF => no momentum input
L-H Transition Coincides with Plasma Rotation Attaining Roughly the Same Value, Independent of Topology

Input power level to attain L→H depends on x-point topology
Ohmic+ICRF => no momentum input

Edge T_e and electron pressure gradients at L→H transition also different
L-H Transition Coincides with Plasma Rotation Attaining Roughly the Same Value, Independent of Topology

- Input power level to attain L→H depends on x-point topology
 - Ohmic+ICRF => no momentum input

- Edge \(T_e\) and electron pressure gradients at L→H transition also different

- But ramps toward co-current as pressure gradients build up

- Plasma rotation during ohmic phase starts out counter-current in USN....

--- SOL flow boundary condition!
L-H Transition Coincides with Plasma Rotation Attaining Roughly the Same Value, Independent of Topology

- **Line Averaged Density**
- **ICRF Power**
- **Electron Temperature**
- **Max $\frac{p_e}{n_e}$ from TS**
- **Ar^{17+} Toroidal Velocity**

Input power level to attain L\rightarrowH depends on x-point topology

Ohmic+ICRF => no momentum input

Edge T_e and electron pressure gradients at L\rightarrowH transition also different

...but ramps toward co-current as pressure gradients build up

Similar rotation at the L\rightarrowH transition!

Plasma rotation during ohmic phase starts out counter-current in USN...

--- SOL flow boundary condition!

=> Potential explanation for x-point topology dependence of L-H power threshold
Summary

- A cross field transport-driven plasma circulation loop is evident in C-Mod ballooning-like transport
 x-point topology sets // flow direction promotes main-chamber impurity migration toward inner divertor

- SOL flows set toroidal rotation boundary conditions for confined plasma x-point topology and toroidal rotation near separatrix are linked!
Summary

- Possible explanation for the x-point dependence of L-H power threshold

\[\text{SOL flows + topology influence flow shear near separatrix} \]

L-H threshold studies with different x-point topologies support hypothesis

L-H transition is coincident with toroidal rotation achieving similar level, independent of x-point topology

SOL flows impede co-current rotation with upper x-point

Correspondingly, more input power (which promotes co-rotation) is required