Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

N. Smick, B. LaBombard
MIT Plasma Science and Fusion Center

PSI-19
San Diego, CA
May 25, 2010
Motivation for boundary flow studies

- Boundary flows move particles poloidally around the plasma to the divertors.
- Poloidal motion of entrained impurities \rightarrow macroscopic erosion and redeposition of divertor surfaces \rightarrow co-deposition of tritium.
- It is difficult to produce a theoretical description of these flows because they are driven in part by anomalous transport.

Other reasons for Boundary flow studies:
- Impurity screening
- Flow-shear turbulence suppression
- Core rotation boundary condition
- Topology-Dependence of H-Mode power threshold
Strong, poloidally asymmetric plasma flows are observed in tokamak boundaries

- Near-sonic (M ~ 0.5) parallel flow is persistently observed in the High Field Side (HFS) SOL (C-Mod [1], JET [2], JT60-U [3]).

- Parallel flow data from Tore Supra imply a strong ballooning-like transport asymmetry, localized within a 30° sector at the low-field side (LFS) midplane [4].

- What are the contributions of different drive mechanisms?
 - Strong ballooning-like transport asymmetry (transport-driven)
 - Neo-classical Pfirsch-Schlüter flows (drift-driven)
 - Toroidal Rotation (drift-driven)

- Mechanism that closes flow loop?

C-Mod’s unique array of scanning Langmuir probes provide three localized measurements of total flow vector:

- Parallel flow from Mach probes, \(v_\parallel \)
- Perpendicular flow from potential gradients, \(v_\perp, E \times B \)
- Radial flow from fluctuation-induced fluxes, \(v_r, \nabla E_\theta \)
C-Mod probes measure total flow vector

- C-Mod’s unique array of scanning Langmuir probes provide three localized measurements of total flow vector:
 - Parallel flow from Mach probes, $v_{||}$
 - Perpendicular flow from potential gradients, $v_{\perp}, E \times B$
 - Radial flow from fluctuation-induced fluxes, $v_r, \n \vec{E}_\theta$

- Net poloidal particle flux can be compared with divertor probes.
Outline of talk

Flow measurements:
- Parallel (V_\parallel)
- Perpendicular ($V_\perp \mathbf{E}_B$, $V_\perp \mathbf{v}_P$)
- Radial ($V_r \mathbf{n}_\theta$)

Compare upper / lower null discharges

Drift-driven components
- Consistency check: $\nabla \cdot V_\theta = 0$?
- V_\parallel Pfirsch-Schlüter
- V_\parallel Toroidal rotation

Transport-driven components
- Consistency check: $\nabla \cdot V_\theta + \nabla \cdot V_r = 0$?
- V_\parallel Transport-driven

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
Outline of talk

Flow measurements:
- Parallel ($V_{||}$)
- Perpendicular ($V_{\perp E_B}$, $V_{\perp \nabla P}$)
- Radial ($V_r \tilde{n} E_\theta$)

Transport-driven components

Drift-driven components

Consistency check:
- $\nabla \cdot V_\theta = 0$?
- $\nabla \cdot V_\theta + \nabla \cdot V_r = 0$?

Consistency check:
- $\nabla \cdot V_{||} = 0$?

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
We start with the hypothesis that the poloidal flow pattern is composed of:

- A **transport-driven** part that:
 - Depends on magnetic topology
 - Has finite divergence
We start with the hypothesis that the poloidal flow pattern is composed of:

- A **transport-driven** part that:
 - Depends on magnetic topology
 - Has finite divergence

- A **drift-driven** part that:
 - Depends on field direction
 - Is divergence-free
Poloidal flow components

We start with the hypothesis that the poloidal flow pattern is composed of:

- A **transport-driven** part that:
 - Depends on magnetic topology
 - Has finite divergence

- A **drift-driven** part that:
 - Depends on field direction
 - Is divergence-free

We measure:

- A **favorable** drift direction flow pattern \((B_x \nabla B \text{ towards } x\text{-point})\):
 \[
 v_{\text{fav}} = v_{\text{transp}} + v_{\text{drift}}
 \]
We start with the hypothesis that the poloidal flow pattern is composed of:

- A **transport-driven** part that:
 - Depends on magnetic topology
 - Has finite divergence

- A **drift-driven** part that:
 - Depends on field direction
 - Is divergence-free

We measure:

- A **favorable** drift direction flow pattern ($B_x \nabla B$ towards x-point):
 $$v_{\text{fav}} = v_{\text{transp}} + v_{\text{drift}}$$

- An **unfavorable** drift direction flow pattern ($B_x \nabla B$ away from x-point):
 $$v_{\text{unfav}} = v_{\text{transp}} - v_{\text{drift}}$$
Transport-driven flow is dominant on HFS; drift-driven flows are dominant on LFS.

- Parallel, **transport-driven** flow is dominant on HFS.
 - Quantitative analysis shows significant heat convection to inner divertor.
- **Drift-driven** flows are dominant on LFS.

L-mode, $0.8 < \langle n_e \rangle [10^{20} m^{-3}] < 1.6.$
Transport-driven flow dominant on HFS; drift-driven on LFS

- Parallel, **transport-driven** flow is dominant on HFS

 Quantitative analysis shows significant heat convection to inner divertor.

- **Drift-driven** flows are dominant on LFS.

L-mode, $0.8 < n_e [10^{20} \text{m}^{-3}] < 1.6.$
Outline of talk

Flow measurements:
Parallel ($V_{||}$)
Perpendicular ($V_{\perp \text{ExB}}, V_{\perp \nabla P}$)
Radial ($V_{r \tilde{n} E_{\theta}}$)

Compare upper / lower null discharges

Drift-driven components
Consistency check: $\nabla \cdot V_{\theta} = 0$?
$V_{||}$ Pfirsch-Schlüter
$V_{||}$ Toroidal rotation

Transport-driven components
Consistency check: $\nabla \cdot V_{\theta} + \nabla \cdot V_{r} = 0$?
$V_{||}$ Transport-driven

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
Drift-driven flow component:
HFS/LFS comparison confirms divergence-free flow

- Calculate total poloidal fluid motion, not guiding center only; includes **Parallel**
Drift-driven flow component: HFS/LFS comparison confirms divergence-free flow

- Calculate total poloidal fluid motion, not guiding center only; includes **Parallel, ExB**

<table>
<thead>
<tr>
<th>HFS</th>
<th>LFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift-Driven Flow [km/s]</td>
<td>Drift-Driven Flow [km/s]</td>
</tr>
<tr>
<td>Electron Diamagnetic Direction</td>
<td>Electron Diamagnetic Direction</td>
</tr>
<tr>
<td>Depth into SOL [mm]</td>
<td>Depth into SOL [mm]</td>
</tr>
</tbody>
</table>

![Drift-Driven Component Diagram]
Drift-driven flow component: HFS/LFS comparison confirms divergence-free flow

- Calculate total poloidal fluid motion, not guiding center only; includes **Parallel**, **ExB** and **Diamagnetic** flow.
Drift-driven flow component:
HFS/LFS comparison confirms divergence-free flow

- Calculate total poloidal fluid motion, not guiding center only; includes Parallel, ExB and Diamagnetic flow.
Drift-driven flow component:
HFS/LFS comparison confirms divergence-free flow

- Calculate total poloidal fluid motion, not guiding center only; includes **Parallel**, **ExB** and **Diamagnetic** flow.

- Total **drift-driven** flow is consistent with **divergence-free flow pattern** as expected from theory: similar profiles of $n\nu_\theta/B_\theta$ to **LFS** to **HFS**.

→ Measurements confirm $\nabla \cdot (\text{Drift-Driven Flow}) = 0$
Outline of talk

Flow measurements:
Parallel (V_\parallel)
Perpendicular (V_\perp ExB, $V_\perp \nabla P$)
Radial ($V_r \tilde{n}E_\theta$)

Compare upper / lower null discharges

Drift-driven components

Consistency check: $\nabla \cdot V_\theta = 0$?

V_\parallel Pfirsch-Schlüter

V_\parallel Toroidal rotation

Transport-driven components

Consistency check: $\nabla \cdot V_\theta + \nabla \cdot V_r = 0$?

V_\parallel Transport-driven

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
Outline of talk

Flow measurements:
- Parallel (V_\parallel)
- Perpendicular ($V_\perp \mathbf{E}_\times \mathbf{B}$, $V_\perp \mathbf{V}_P$)
- Radial ($V_r \hat{n}_E \theta$)

Compare upper / lower null discharges

Drift-driven components
- Consistency check: $\nabla \cdot V_\theta = 0$?
- V_\parallel Pfirsch-Schlüter
- V_\parallel Toroidal rotation

Transport-driven components
- Consistency check: $\nabla \cdot V_\theta + \nabla \cdot V_r = 0$?
- V_\parallel Transport-driven

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
We can now unambiguously decompose the drift-driven parallel flow.
We can now unambiguously decompose the drift-driven parallel flow into toroidal rotation.
We can now unambiguously decompose the drift-driven parallel flow into toroidal rotation and Pfirsch-Schlüter components.
Outline of talk

Flow measurements:
- Parallel ($V_{||}$)
- Perpendicular (V_{\perp}, $V_{\perp} ExB$, $V_{\perp} \nabla P$)
- Radial ($V_{r} n E_{\theta}$)

Compare upper / lower null discharges

Drift-driven components
- Consistency check: $\nabla \cdot V_{\theta} = 0$?
- $V_{||}$ Pfirsch-Schlüter
- $V_{||}$ Toroidal rotation

Transport-driven components
- Consistency check: $\nabla \cdot V_{\theta} + \nabla \cdot V_{r} = 0$?
- $V_{||}$ Transport-driven

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
HFS transport-driven poloidal flow component consistent with LFS fluctuation-induced radial flux

- Model transport-driven poloidal particle flux as $\sin(\theta)$ on LFS.

\[S: \text{Normalized poloidal distance from outer to inner divertor} \]
HFS transport-driven poloidal flow component consistent with LFS fluctuation-induced radial flux

- Model transport-driven poloidal particle flux as \(\sin(\theta) \) on LFS.
- Constrain with measured value of poloidal flux on HFS.

\[S = \text{Normalized poloidal distance from outer to inner divertor} \]
HFS transport-driven poloidal flow component consistent with LFS fluctuation-induced radial flux

- Model transport-driven poloidal particle flux as sin(θ) on LFS.
- Constrain with measured value of poloidal flux on HFS.
- Calculate LFS radial particle flux implied by HFS poloidal flux using continuity.

S: Normalized poloidal distance from outer to inner divertor
HFS transport-driven poloidal flow component consistent with LFS fluctuation-induced radial flux

- Model transport-driven poloidal particle flux as $\sin(\theta)$ on LFS.
- Constrain with measured value of poloidal flux on HFS.
- Calculate LFS radial particle flux implied by HFS poloidal flux using continuity.
- Result shows agreement with measurements of fluctuation-induced particle flux on the LFS through $\tilde{n}\tilde{E}_\theta$.
Outline of talk

Flow measurements:
- Parallel ($V_{||}$)
- Perpendicular ($V_{\perp \text{ExB}}$, $V_{\perp \nabla P}$)
- Radial ($V_r \tilde{n}_\theta$)

Compare upper / lower null discharges

Drift-driven components
- Consistency check: $\nabla \cdot V_\theta = 0$?
- $V_{||}$ Pfirsch-Schlüter
- $V_{||}$ Toroidal rotation

Transport-driven components
- Consistency check: $\nabla \cdot V_\theta + \nabla \cdot V_r = 0$?
- $V_{||}$ Transport-driven

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
Outline of talk

Flow measurements:
- Parallel (V_\parallel)
- Perpendicular ($V_\perp \mathbf{E}_B$, $V_\perp \mathbf{v}_P$)
- Radial ($V_r \hat{n}_E \theta$)

Compare upper / lower null discharges

Drift-driven components
- Consistency check: $\nabla \cdot V_\theta = 0$?
- V_\parallel Pfirsch-Schlüter
- V_\parallel Toroidal rotation

Transport-driven components
- Consistency check: $\nabla \cdot V_\theta + \nabla \cdot V_r = 0$?
- V_\parallel Transport-driven

Closure of flow loop?
- Recycling from HFS divertor
- HFS turbulent inward pinch
- Volume recombination zone
HFS poloidal particle flux not accounted for at divertor

- Inner divertor flux is comparable to poloidal particle flux observed at HFS midplane.
HFS poloidal particle flux not accounted for at divertor

- Inner divertor flux is comparable to poloidal particle flux observed at HFS midplane.
- KN1D simulations [5, 6] indicate that neutral penetration to core/private zone from inner divertor is <10% due to short neutral MFP.

HFS poloidal particle flux not accounted for at divertor

• Inner divertor flux is comparable to poloidal particle flux observed at HFS midplane.

• KN1D simulations [5, 6] indicate that neutral penetration to core/private zone from inner divertor is <10% due to short neutral MFP.

• Thus, continuity requires that some other mechanism is diverting particles from the HFS SOL.

→ Inner divertor recycling does not explain closure of flow loop.

Could particles be returning to the core via a **HFS turbulent pinch**? This is a solution commonly employed by 2-D edge codes to explain HFS flows. [7, 8, 9]

Measurements rule out HFS midplane turbulent pinch

- HFS radial particle flux is robustly zero at midplane location.
Measurements rule out HFS midplane turbulent pinch

- HFS radial particle flux is robustly zero at midplane location.
• HFS radial particle flux is robustly zero at midplane location.

• Caveat: Particle pinch at other locations along the inner divertor leg cannot be ruled out
Could a volume recombination zone be present in the far SOL of the inner divertor leg, returning particles to the core as neutrals? [10]

Could a **volume recombination** zone be present in the far SOL of the inner divertor leg, returning particles to the core as neutrals? [10]

KN1D modeling indicates recombining plasma would have to impinge on closed field lines to allow sufficient neutral penetration to close loop.

Hypothesis: Volume recombination closes flow loop

Could a **volume recombination** zone be present in the far SOL of the inner divertor leg, returning particles to the core as neutrals? [10]

- KN1D modeling indicates recombining plasma would have to impinge on closed field lines to allow sufficient neutral penetration to close loop.
- This is inconsistent with observation of partially attached inner divertor.
- Neutral penetration from volume recombination zone does not close mass flow loop.

Future work: Other candidates for closing mass flow loop must be investigated

Having eliminated the most obvious closure mechanisms for the poloidal flow loop, we must look to other candidates:

- Radial convection ($E_\theta \times B$)
- X-point specific physics
- Pinch or diffusion into private flux zone
Conclusions

- Total flow vector has been measured and shown to be consistent with physical expectations.
 - Measured drift-driven flows are divergence-free.
 - Transport-driven poloidal particle flux is consistent with measured LFS fluctuation-induced radial particle flux.
 - Pfirsch-Schlüter, toroidal rotation and and transport-driven contributions to parallel flow are uniquely identified.

- Transport-driven parallel flows dominate HFS poloidal particle flux, carrying plasma toward active X-point.
 - Convection is important in HFS poloidal heat transport.

- Closure mechanism for transport driven flow loop:
 - Divertor recycling cannot account for transport-driven poloidal particle flux.
 - HFS midplane turbulent particle pinch is zero.
 - KN1D simulations show that direct neutral penetration from recombining plasma zone does not close the flow loop.
References