Extending the boundary heat flux width database to 1.3 Tesla poloidal magnetic field in the Alcator C-Mod tokamak

D. Brunnera,b, B. LaBombardb, A.Q. Kuangb, J.L. Terryb, J.W. Hughesb, A. Hubbardb, M.L. Reinkec, S.M. Wolfeb, and the Alcator C-Mod Team

aCommonwealth Fusion Systems
bMIT Plasma Science and Fusion Center
cOak Ridge National Laboratory

Contact: brunner@mit.edu

Presented June 22, 2018 at the 23rd PSI Conference, Princeton, NJ

This work was supported by DoE contracts DE-SC0014264 and DE-FC02-99ER54512 and Commonwealth Fusion Systems
Present experiments point to enormous power exhaust challenge in reactors

• "Eich" heat flux width scaling [1]:
 \[\lambda_q \propto B_p^{-1} \]
 \[q_{\parallel} \propto \frac{P_{SOL} B}{R} \]

• Unmitigated parallel heat fluxes in reactor \(\sim 10 \) GW/m\(^2\) in reactor-class devices [2]

• Uncertainty in projections

• Some simulations indicate much wider \(\lambda_q \) for ITER than empirical trends

Multi-machine ITPA database was limited in most important parameter: B_p

“The result is that practically only the poloidal magnetic field is identified to be statistically important.”[1]:

$$\lambda_q = (0.63 \pm 0.08) \times B_p^{-1.19 \pm 0.08}$$

- ITER 15-MA scenario at 50% higher B_p than maximum in database
- C-Mod has been the only diverted tokamak operated at and above ITER-level B_p
- Major focus of C-Mod’s last campaign to characterize λ_q at reactor-level B_p
- Present here new C-Mod measurements at reactor-relevant B_p, λ_q, and $q_{||}$

Overview

• New C-Mod λ_q measurements in H-mode show inverse B_p scaling continues to above ITER-level B_p

• Cross-confinement (L-, I-, and H-mode) λ_q organizes with inverse square root of volume-average core plasma pressure
 • Linkage of physics setting core and boundary confinement
 • Challenge to 1st-principles and heuristic models

• Database challenges two assumptions of heuristic drift model

• Probe-based measurements improve resolution over IR analysis, revealing important limitations in assumptions and analytic equations used to fit data
Narrow λ_q calls for improved diagnostics

- IR thermography only heat flux diagnostic used in multi-machine ITPA database
- IR on C-Mod has oblique view of outer divertor [1]
- Resolution estimated at ~ 0.5 mm (mapped to outer mid-plane) [2]
- Projected λ_q at $B_p = 1.2$ T:
 \[
 \lambda_q \approx 0.63 \times 1.2^{-1.19} \approx 0.51 \text{ mm}
 \]
- Needed to develop a finer measurement tool...

C-Mod probes have sufficient resolution for high-B_p, narrow-λ_q measurements

- Surface thermocouples expose refractory metal thermojunction to divertor plasma, directly measure surface heat flux [1]
 - Validated against calorimetry, IR thermography, and Langmuir probes
- Conservative resolution estimate ~ 0.05 mm (mapped to outer mid-plane)
 - 10x better than C-Mod IR system

Shot-integrated energy flux used to validate sensors for each shot in the database

- Integrate time evolution of surface heat flux from surface thermocouples and Langmuir probes [1]
- Compare to energy flux from tile thermocouples and calorimeters
- Identify and remove erroneous probes
- Plasma and total energy fluxes match: minimal photon and neutral energy fluxes
- Sheath heat flux assumptions appropriate
 - $T_i \approx T_e$
 - minimal net secondary electrons
 - account for net currents

Combined probe-based heat flux profile is a significant improvement over IR analysis

- Higher resolution
- Higher dynamic range:
 - Probes: ~10,000
 - IR: ~100

Note: different shots, both outer divertor
ITPA database used analytic method for obtaining λ_q from measurements

- At divertor entrance: exponential profile truncated at last closed flux surface
 \[q_{\parallel} = q_0 \exp \left(-\frac{\rho}{\lambda_q} \right) \rho > 0 \]

- Assume symmetric cross-field heat transport with Gaussian spreading, characteristic length S

- Convolve to get "Eich" profile [1]:
 \[q(\rho) = \frac{q_0}{2} \exp \left(\left(\frac{S}{2\lambda_q} \right)^2 - \frac{\rho}{\lambda_q} \right) \operatorname{erfc} \left(\frac{S}{2\lambda_q} - \frac{\rho}{S} \right) + q_{BG} \]

- Includes uniform background heat flux q_{BG}

- Fit to measurements to extract λ_q

Standard fit insufficient to capture profile details revealed by probes

• Background term tries to fit far SOL
• Without background, the Gaussian spreading is a poor fit to private flux region

\[q(\rho) = \frac{q_0}{2} \exp \left(\frac{(S)}{2\lambda_q} - \frac{\rho}{\lambda_q} \right) \text{erfc} \left(\frac{S}{2\lambda_q} - \frac{\rho}{S} \right) + q_{BG} \]
Improved “multi-\(\lambda\)” equation fits probe data over entire profile

- Including Gaussian convolution allows it to fit IR data as well, although almost never needed for probes
- IR analysis may be resolution limited
- Exponential private region seen in other tokamaks

\[
q_{||} (\rho) = \begin{cases}
(q_0 - q_{pf}) e^{\rho/\lambda_{q, pn}} + q_{pf} e^{\rho/\lambda_{q, pf}}, & \rho < 0 \\
(q_0 - q_{cf}) e^{-\rho/\lambda_{q, cn}} + q_{cf} e^{-\rho/\lambda_{q, cf}}, & \rho \geq 0
\end{cases}
\]

Note: different shots, both outer divertor
Assumption of Gaussian-like cross-field heat transport in the outer leg does not match data

- May be okay for high-dissipation regimes, but not where plasma transport dominates

- Asymmetric profile on either side of strike point reminiscent of upstream profiles [1]:
 - Large turbulent cross-field fluxes on low-field side
 - Minimal turbulent cross-field fluxes on high-field side

- Similar curvature drive and stabilization in the divertor leg?
 - If so, leg angle in poloidal plane would be important

- Asymmetric turbulent phenomena seen in fast camera imaging of private flux region [2,3]

- Private flux λ_q scales roughly with boundary collisionality, no clear trend found yet

C-Mod high-field, high-resolution λ_q database with >300 shots

• Criteria: Good divertor heat flux profile from strike point sweep with low dissipation and relatively steady upstream conditions
 • \sim1/3rd EDA H-mode, all forward field ($B \times \nabla B$ drift to x-point), no ELMs
 • \sim1/3rd I-mode, all reverse field ($B \times \nabla B$ drift away from x-point), no ELMs
 • \sim1/3rd L-mode, half-and-half forward and reverse fields, no ELMs

• Wide range of engineering parameters
• Narrow range of shape due to need to keep strike point on sensors

<table>
<thead>
<tr>
<th>$B_T [T]$</th>
<th>$B_p [T]$</th>
<th>$\bar{n}_e [10^{20} / m^3]$</th>
<th>$P_{in} [MW]$</th>
<th>κ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7-8.0</td>
<td>0.43-1.3</td>
<td>0.44-5.2</td>
<td>0.52-5.5</td>
<td>1.5-1.8</td>
<td>0.48-0.61</td>
</tr>
</tbody>
</table>
C-Mod unmitigated heat flux conditions near reactor-level

- Heat flux widths from 0.5 mm to 2.5 mm
- Peak parallel heat fluxes from 0.1 GW/m2 to 2 GW/m2
 - Surface heat flux up to ~100 MW/m2
New high-field C-Mod data extends empirical trend in H-mode to ITER-level B_p

- Better resolution, less scatter from probe measurements and improved analytic fitting equation

New high-field C-Mod data extends empirical trend in H-mode to ITER-level B_p

- Better resolution, less scatter from probe measurements and improved analytic fitting equation
- B_p-scaling ITER: $\lambda_q = 0.51$ mm
- Minimum C-Mod database: $\lambda_q = 0.48$ mm
- Empirical poloidal field scaling stands in stark contrast to recent simulations [2,3]

Some have suggested ρ^* to be cause of wider λ_q predicted for ITER

- Simulated λ_q for ITER \sim10 times wider than empirical scalings
- Difference sometimes attribute to transition to “new physics” at smaller ρ^*
- C-Mod ρ_p^* at LCFS \sim10x larger than ITER
- JET ρ_p^* at LCFS is \sim2x larger than ITER
 - Unlikely to see major change in ρ_p^*-based physics from JET to ITER
 - No change in \sim20x ρ_p^* range in present experiments
- Need predictions from simulations that we can test in present experiments to have confidence in “new physics” for ITER

[1] ITPA Confinement Database DB4v5.
Poloidal field trend matters across confinement regimes

- **H-mode:**
 - Purely inverse scaling
 - Slightly wider than purely B_p multi-machine scaling
 - Nearly identical to multi-machine scaling when including aspect ratio (Regression #15 [1])

- **L-mode:**
 - $\sim2x$ wider than H-mode
 - Nearly inverse scaling

- **I-mode:**
 - Scattered distribution bounded between L- and H-mode

Poloidal magnetic field also strongly influences core confinement

• H-mode (ITER DB):
 \[\tau_e \propto I_p^{0.93} \]

• L-mode (ITER DB):
 \[\tau_e \propto I_p^{0.96} \]

• I-mode (C-Mod DB):
 \[\tau_e \propto I_p^{0.69} \]
Volume-averaged core plasma pressure reduces scatter and unifies heat flux width across regimes

• Scaling with inverse square-root of core plasma pressure (equivalently stored energy at constant geometry)
 • Shots are non-hybrid, no ITBs, only ETBs

• L- and H-mode not surprising:
 • Stored energy dominated by plasma current
 • H-mode higher confinement and narrower λ_q than L-mode; see also ASDEX-U and JET

• I-mode ties together intermediate stored energy and λ_q

• Simple rule-of-thumb: $\lambda_q [\text{mm}] \approx \frac{1}{\sqrt{\bar{\rho} [\text{atm}]}}$

• Or, in SI units: $\lambda_q [\text{m}] \approx \sqrt{\frac{0.1 [\text{N}]}{\sqrt{\bar{\rho} [\text{Pa}]}}}$
Volume-averaged core plasma pressure reduces scatter and unifies heat flux width across regimes

- Can have the same core pressure and divertor heat flux width over a wide range of poloidal magnetic fields
- Direct link between physics setting core and boundary cross-field physics?
- Marginal stability from core, through pedestal, and to divertor?
First analysis of \overline{p}-λ_q size scaling: combine ITPA databases

• Examine individual machines at high and low B_p values
• Take the maximum extent of heat flux widths from ITPA λ_q database λ_q-B_p plot (Fig. 3) [1]
• Sort ITPA H-mode confinement database by B_p, take mean volume-averaged plasma pressure $\pm 2\sigma$ [2]

Initial analysis suggest similar scaling across machines in H-mode

- For a given machine and B_p, heights of ellipses are λ_q-ranges and widths are \tilde{p}-ranges.
- Good agreement with C-Mod data, especially higher-field data.
- May need correction for low-aspect ratio.
- Projections remarkably close between scalings and remarkably narrow.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B_p^{-1} scaling</td>
<td>0.51</td>
<td>0.49</td>
<td>0.39</td>
<td>0.26</td>
</tr>
<tr>
<td>$\tilde{p}^{-1/2}$ scaling</td>
<td>0.51</td>
<td>0.42</td>
<td>0.39</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Hints of confinement–heat flux width link in previous C-Mod H-mode results

• Heat flux width decreases with increased stored energy [1]
 • Over much smaller range, trend less clear

• Links to results elsewhere
 • Increased confinement and decreased heat flux width in NSTX with Li [2,3]
 • ASDEX-U (Happel talk yesterday)

• Connection between core and boundary confinement identified in C-Mod 20 years ago [4]

New C-Mod data also extends HD model to new parameter space, lower λ_q

- Heuristic Drift model assumptions [1]:
 - Cross-field particle transport dominated by classical drifts in H-mode
 - Parallel Pfirsch–Schlüter flows balanced by near sonic-parallel losses to divertor
 - Anomalous cross-field electron thermal diffusion fills in SOL plasma channel
 - Spitzer–Härm parallel heat loss
 - Small volumetric particle sources in SOL

- Fit multi-machine database well
- New C-Mod data follows HD model

I-mode challenges HD model particle transport assumption

- I-mode
 - L-mode-like particle confinement
 - H-mode-like energy confinement
- HD model assumes:
 - Turbulent particle losses dominate L-mode
 - Particle drift losses dominate H-mode

\begin{align*}
\text{all } B_p &= 1.2 \, T
\end{align*}
I-mode challenges HD model particle transport assumption

- I-mode
 - L-mode-like particle confinement
 - H-mode-like energy confinement
- HD model assumes:
 - Turbulent particle losses dominate L-mode
 - Particle drift losses dominate H-mode
- But, I-mode follows HD model scaling as well as H-mode; L-mode close in some cases
- Particle channel does not set λ_q as assumed in HD model
 - λ_q related to upstream temperature profile, depending on collisionality [1] (also Happel talk yesterday)

Neutral pressure measurements challenge HD model particle recycling assumption

• Expect increased neutral particle sources to broaden SOL particle width [1]
• Measured λ_q should then be wider than λ_{HD} prediction with increased neutral particle recycling
• Yet, experimental trend is weak or in the opposite direction over $\sim 10^3$ change in neutral pressure
• HD model gets the right answer, but for the wrong reason?

Conclusion 1: Benchmarked, probe-based sensors have improved resolution and dynamic range over IR analysis

- An improved analytic 4-exponential divertor heat flux profile (near/far private/common regions)
 - Results in improved common SOL heat flux fitting, less scatter

- **Poor applicability of uniform Gaussian spreading parameter S**, cross-field transport is asymmetric under low dissipation

- Private flux region λ_q is narrower than common, possibly linked to curvature driven/stabilized cross-field pressure gradients

- Private flux λ_q correlated with edge collisionality, no clear trend yet found

![Graph showing heat flux profile with parameters and data points](image)
Conclusion 2: Alignment of λ_q across confinement regimes with inverse square root of core plasma pressure

- Connection of cross-field transport setting core confinement and divertor heat flux width?
- Initial look reveals similar trend across machines in H-mode, requires further exploration
- Simple rule-of-thumb:
 $$\lambda_q \text{ [mm]} = \frac{1}{\sqrt{\bar{\rho}} \text{ [atm]}}$$
Conclusion 3: H-mode inverse B_p scaling continues to above ITER-level B_p

- Empirical trend challenges models and heuristic assumptions

- Future work:
 - Examine private flux width scaling in detail
 - Connect upstream profiles across regimes, search for common/different physics
 - Multi-machine, multi-confinement mode examination of pressure-based λ_q scaling