Measurement of the current profile in Alcator C-Mod with Lower Hybrid Current Drive using an upgraded Motional Stark Effect diagnostic*

R. T. Munguard¹, S. D. Scott², S. Shiraiwa¹, G. M. Wallace¹, R. R. Parker¹, J. W. Hughes¹, R. S. Granetz²

¹*Plasma Science and Fusion Center, MIT, Cambridge, MA, USA
²Princeton Plasma Physics Laboratory, Princeton NY, USA

This work is supported by the U.S. DOE, OES awards DE-FC02-03ER54512 and DE-AC02-09CH11466.

Key points:
- LHCD system on Alcator C-Mod capable of coupling ~1MW of power to plasma for several current relaxation times
- Upgraded Motional Stark Effect (MSE) diagnostic used with within-shot calibration technique and kinetic profiles to constrain magnetic reconstructions
- System used to study reconstructed current profile in plasmas with strong Lower Hybrid Current Drive (LHCD):
 - Current profile evolution consistent with sawtooth suppression/reappearance; timescales correct
 - Non-inductive discharges show broad current profile with significant on-axis current drive
 - Increasing density decreases driven current faster than expected, consistent with previous results
 - Profile may move slightly outward with increasing density
 - Decreasing LHCD launched n reduces MSE pitch angles

Lower Hybrid Current Drive on Alcator C-Mod at ITER relevant field, frequency and density[1]
- 12 Krysts provide 2.5MW source power, 1MW coupled to plasma
- 4.6 GHz (ITER at 5GHz [2])
- 16 active columns of 4 rows
- Pulse lengths up to 1s achieved (5-10 current relaxation times)[3]
- All six fully released current profiles
- Extendable up to 5s in future
- Variable phasing allows launched n from 1.4 to 3 within a pulse on a millisecond time scale

Upgraded Motional Stark Effect diagnostic for constraining magnetic reconstructions[4]
- Thermal stress-induced birefringence not completely eliminated in the MSE optics.
- The diagnostic calibration drifts due to shot (1-2min time scale)

Within shot Ohmic calibration technique used to compensate for MSE diagnostic drift[5]
- Thermal stress-induced birefringence not completely eliminated in the MSE optics.
- The diagnostic calibration drifts due to shot (1-2min time scale)

Within MSE calibration technique:
- Reconstruct Ohmic pre-LHCD portion using magnetic, sawtooth inversion radius (SIR) and pressure constraints
- Determine MSE calibration offset using reconstructed pitch angles
- MSE, magnetic and kinetic profiles then used as constraints in LHCD reconstructions

Key points:
- MSE response is constant throughout a discharge
- MSE response is linear
- An offset correctly characterizes the MSE calibration drift
- LHCD neutral beam, magnets do not affect the operation of the diagnostic
- MSE, magnetic and kinetic profiles then used as constraints in LHCD reconstructions

Within shot Ohmic calibration technique used to compensate for MSE diagnostic drift[5]
- Thermal stress-induced birefringence not completely eliminated in the MSE optics.
- The diagnostic calibration drifts due to shot (1-2min time scale)

Within MSE calibration technique:
- Reconstruct Ohmic pre-LHCD portion using magnetic, sawtooth inversion radius (SIR) and pressure constraints
- Determine MSE calibration offset using reconstructed pitch angles
- MSE, magnetic and kinetic profiles then used as constraints in LHCD reconstructions

Key points:
- MSE response is constant throughout a discharge
- MSE response is linear
- An offset correctly characterizes the MSE calibration drift
- LHCD neutral beam, magnets do not affect the operation of the diagnostic
- MSE, magnetic and kinetic profiles then used as constraints in LHCD reconstructions

Within shot Ohmic calibration technique used to compensate for MSE diagnostic drift[5]
- Thermal stress-induced birefringence not completely eliminated in the MSE optics.
- The diagnostic calibration drifts due to shot (1-2min time scale)

Within MSE calibration technique:
- Reconstruct Ohmic pre-LHCD portion using magnetic, sawtooth inversion radius (SIR) and pressure constraints
- Determine MSE calibration offset using reconstructed pitch angles
- MSE, magnetic and kinetic profiles then used as constraints in LHCD reconstructions

Key points:
- MSE response is constant throughout a discharge
- MSE response is linear
- An offset correctly characterizes the MSE calibration drift
- LHCD neutral beam, magnets do not affect the operation of the diagnostic
- MSE, magnetic and kinetic profiles then used as constraints in LHCD reconstructions

LHCD N discharge scans show only mild dependence of driven current location on launched n; future work includes further analysis of shots and comparison to simulations of LHCD
- Decreasing n decreases current drive slightly outward
- Increases the current drive efficiency, qualitatively consistent with theory through n dependence is not as strong as expected

Assumptions used in this technique have been verified:
- MSE response is constant throughout a discharge
- MSE response is linear
- An offset correctly characterizes the MSE calibration drift
- LHCD neutral beam, magnets do not affect the operation of the diagnostic
- MSE, magnetic and kinetic profiles then used as constraints in LHCD reconstructions

Next steps include further analysis of shots and comparison to simulations of LHCD
- Mechanical in-situ between shot MSE calibration system has been installed to obtain an absolute pitch angle calibration for each shot
- Eliminate the need for within-shot Ohmic calibration technique
- Refine data analysis
- Investigate systematic errors in the MSE calibration technique
- Develop uncertainty estimates for the reconstructions
- Simulate the discharges using RF codes to determine the contribution from DC electric field – RF fast electron coupling to better estimate the LHCD current profile
- Compare to time dependent RF-equilibrium codes
- Future upgrade to Alcator LHCD system including an additional advanced poloidal polarimeter measurement[6]

References: