Experimental Techniques at ASDEX Upgrade for Validation of Gyrokinetic Simulations

A.J. Creely1 \hspace{2cm} G.D. Conway,2 S.J. Freethy,1,2 T. Görler,2 T. Happel,1 A.E. White,1 and the ASDEX Upgrade Team2

1 MIT PSFC \hspace{2cm} 2 Max Plank Institute for Plasma Physics – Garching

This work is supported by the US DOE under Grants DE-SC0006419 and DE-FC02-99ER54512-CMOD and by the US DOD under the NDSEG Fellowship
Validation of Gyrokinetic Codes Requires Detailed Comparison to Experiment

- Gyrokinetic simulations must be validated with experimental results before they can be used predictively.

- Ion-scale simulations contain reduced physics, but run much faster than multi-scale simulations ($\sim 10^7$ CPU hours) [Howard PoP 2016].

- Would like to use ion-scale simulations, but recent results on Alcator C-Mod suggest that ion-scale GYRO simulations are insufficient for some L- and I-mode plasmas [Creely PoP 2017].

- New techniques on ASDEX Upgrade enable further investigation of these discrepancies, as well as cross-machine and cross-code comparisons:
 - Long Wavelength Electron Temperature fluctuations (CECE)
 - Perturbative Thermal Diffusivity (Partial Sawtooth Heat Pulses)
Ion-Scale Simulations of Alcator C-Mod
L-mode Plasmas Motivate Further Work

- Ion Heat Flux (Matched)

![Graph of L-Mode Ion Heat Flux]

[Creely PoP 2017]
Ion-Scale Simulations of Alcator C-Mod
L-mode Plasmas Motivate Further Work

- Ion Heat Flux (Matched)
- Electron Heat Flux (Under)

[Creely PoP 2017]
Ion-Scale Simulations of Alcator C-Mod

L-mode Plasmas Motivate Further Work

- Ion Heat Flux (Matched)
- Electron Heat Flux (Under)
- Perturbative Diffusivity (Under)

\[\chi_{Exp}^{pert} = 4.0 \, m^2/s \]
\[\chi_{GYRO}^{pert} = 0.4 \, m^2/s \]

[Creely PoP 2017]
Ion-Scale Simulations of Alcator C-Mod
L-mode Plasmas Motivate Further Work

- Ion Heat Flux (Matched)
- Electron Heat Flux (Under)
- Perturbative Diffusivity (Under)
- Temperature Fluctuations (Under)

[Creely PoP 2017]
Ion-Scale Simulations of Alcator C-Mod
L-mode Plasmas Motivate Further Work

- Ion Heat Flux (Matched)
- Electron Heat Flux (Under)
- Perturbative Diffusivity (Under)
- Temperature Fluctuations (Under)

[Creely PoP 2017]
Ion-Scale Simulations of Alcator C-Mod
L-mode Plasmas Motivate Further Work

- Ion Heat Flux (Matched)
- Electron Heat Flux (Under)
- Perturbative Diffusivity (Under)
- Temperature Fluctuations (Under)

[Told PoP 2013]

Ion Heat Flux (Matched)

Electron Heat Flux

Perturbative Diffusivity

Temperature Fluctuations

[Told PoP 2013]

Graphs

L-Mode Ion Heat Flux
- \(\chi_{\text{GYRO}} = 0.4 \, m^2/s \)
- \(\chi_{\text{TRANSP Qi}} \)
- \(\chi_{\text{TRANSP Qi}} \)

L-Mode Electron Heat Flux
- \(\chi_{\text{GYRO}} = 4.0 \, m^2/s \)
- \(\chi_{\text{TRANSP Qe}} \)
- \(\chi_{\text{TRANSP Qe}} \)

Ion Heat Flux
- Matched Simulation

Temperature Fluctuations
- ASDEX Upgrade

Sensitivity Limit
- ASDEX Upgrade

[Creely PoP 2017]
Perturbative Thermal Diffusivity Governs the Propagation of Heat Pulses

- Standard power balance electron thermal diffusivity, governs steady state diffusion.

- Perturbative, or incremental, thermal diffusivity governs the diffusion of perturbations and is related to stiffness [Tubbing NF 1987].

- Should not be directly compared with one another [Cardozo PPCF 1995].
Perturbative Diffusivity is Measured Experimentally through Heat Pulses

- Heat pulses generated with partial sawteeth [Creely NF 2016], modulated ECH [Ryter PPCF 2010], etc.

- Partial sawteeth avoid non-diffusive ‘ballistic’ transport associated with full sawteeth [Fredrickson PoP 2000].

- Perturbative diffusivity calculated here with Extended-Time-to-Peak Method for partial sawteeth [Tubbing NF 1987, Creely NF 2016].

- Can then compare to gyrokinetics [Smith NF 2015].

\[\chi_e^{pert} \sim \frac{V_{\text{HP}}}{\alpha} \]

Velocity of Peak: \(V_{\text{HP}} \)

Pulse Damping: \(\alpha \)

Alcator C-Mod Partial Sawtooth Heat Pulse

\(r/a = 0.64 \)
\(r/a = 0.74 \)
\(r/a = 0.84 \)
Perturbative Thermal Diffusivity Found to Correlate with Various Plasma Parameters

- Previous work investigated the correlation between perturbative diffusivity and various plasma parameters (n_e, T_e, a/L_T, etc.)

C-Mod data from [Creely NF 2016]
Perturbative Thermal Diffusivity Found to Correlate with Various Plasma Parameters

- Previous work investigated the correlation between perturbative diffusivity and various plasma parameters (n_e, T_e, a/L_{Te}, etc.)

- Initial work on ASDEX Upgrade shows trends consistent with those found on Alcator C-Mod

C-Mod data from [Creely NF 2016]
Future Work Will Compare to Perturbative Diffusivity Measured with Modulated ECH

- All previous work with partial sawteeth has been on Alcator C-Mod, which doesn’t have ECH.
- ASDEX Upgrade can also measure perturbative diffusivity with modulated ECH [Ryter PPCF 2001].
- Allows for cross-machine gyrokinetic validation (GENE and GYRO), and multi-scale simulations

[Adapted from Ryter PPCF 2001]
Future Work Will Compare to Perturbative Diffusivity Measured with Modulated ECH

- All previous work with partial sawteeth has been on Alcator C-Mod, which doesn’t have ECH.

- ASDEX Upgrade can also measure perturbative diffusivity with modulated ECH [Ryter PPCF 2001].

- Allows for cross-machine gyrokinetic validation (GENE and GYRO), and multi-scale simulations

ADAPTED FROM RYTER PPCF 2001

Preliminary Data Falls in this Range

-\(\chi_e^{\text{HP}} \) vs. \(\nabla T_e / T_e \) [m\(^{-1}\)]

-\(\chi_e \) vs. \(\chi_e^{\text{HP}} / T^{3/2} \) [m\(^2\)s, keV]
Correlation Electron Cyclotron Emission (CECE) Measures Temperature Fluctuations

- CECE measures low-k \((k_\theta \rho_s < 0.4) \) electron temperature fluctuations, key to understanding ITG/TEM turbulence [Freethy RSI 2016, This Conference]

- Correlating two closely spaced ECE radiometer channels allows detection of fluctuations below thermal noise of single channel

- Statistical noise floor depends on length of the measurement time period.
New Hardware on ASDEX can Measure Radial Profiles and Correlation Length

- Recent upgrade from 10 channels on two systems to 30 channels on one system
- Allows for fine radial profile measurements
- Preliminary analysis of L-modes shows that temperature fluctuation levels increase with radius
- Future work will look at radial correlation lengths
Conclusions and Future Work

- Would like to use ion-scale gyrokinetic simulations, but recent results on Alcator C-Mod suggest that ion-scale GYRO simulations are insufficient for some L- and I-mode plasmas [Creely PoP 2017].

- New techniques on ASDEX Upgrade enable further investigation of these discrepancies, as well as cross-machine and cross-code comparisons:
 - New CECE enables fine radial profile and correlation length measurements
 - Partial Sawtooth Heat Pulses enable passive measurement of perturbative thermal diffusivity

- Currently in the process of comparing GYRO and GENE on Alcator C-Mod and utilizing new techniques on ASDEX Upgrade for GENE comparisons.
References

Backup Slides
Radial Profile Resolution Greatly Expanded

- In 2017 – Greater flexibility and increased number of channels to allow finer $\delta T_e/T_e$ radial profiles (below) and radial correlation lengths.

![AUG #32766 fluctuation profile]

2015/16 radial profile

![AUG #33995 fluctuation profile]

2017 radial profile
Perturbative Thermal Diffusivity is Related to Gyrokinetic Temperature Profile Stiffness

- In gyrokinetic simulations, can measure slope of heat flux against a/L_{Te} above the critical gradient [Citrin NF 2014].

\[\frac{\partial Q_e}{\partial (a / L_{Te})} = \chi_e^{HP} \cdot \frac{n_e T_e}{a} \]

- Run gyrokinetics with different a/L_{Te} to map out slope.

- Can compare to experimentally measured perturbative diffusivity [Smith NF 2015]

\[L_{Te} = \frac{T_e}{\nabla T_e} \]

High and low stiffness plasmas, with same critical gradient.
Before Sawtooth

\[T_e \]
The diagram illustrates the change in T_e (electron temperature) as a function of radius r. The graph shows two distinct phases:

1. **Before Sawtooth**: The curve for T_e is relatively flat, indicating a stable phase before the sawtooth event.
2. **After Full Sawtooth**: The curve drops sharply, indicating a significant change in T_e after the sawtooth event.

Key points:
- **Inversion Radius**: The point where the curve begins to drop sharply.
- **Ballistic Effect**: The rapid decrease in T_e post-sawtooth.
- **Mixing Radius**: The radius at which the change in T_e is most pronounced.

The diagram highlights the impact of sawtooth events on plasma parameters in tokamaks.
Partial Sawtooth

Before Sawtooth

After Partial Sawtooth

Inversion Radius

Mixing Radius

T_e
Perturbative Diffusivity is Measured Experimentally through Heat Pulses

- Propagation of diffusive heat pulses in plasma can be used to measure perturbative diffusivity.

- Heat pulses generated with partial sawteeth crashes, modulated ECH, etc. [Creely NF 2016, Cardozo PPCF 1995, Ryter PPCF 2010]

- Perturbative diffusivity calculated here with Extended-Time-to-Peak Method for partial sawteeth [Tubbing NF 1987, Creely NF 2016].
Perturbative Diffusivity is Measured Experimentally through Heat Pulses

- Propagation of diffusive heat pulses in plasma can be used to measure perturbative diffusivity.

- Heat pulses generated with partial sawtooth crashes, modulated ECH, etc. [Creely NF 2016, Cardozo PPCF 1995, Ryter PPCF 2010]

- Perturbative diffusivity calculated here with Extended-Time-to-Peak Method for partial sawtooth [Tubbing NF 1987, Creely NF 2016].

\[\chi_e^{HP} \sim \frac{V_{HP}}{\alpha} \]

Velocity of Peak: \(V_{HP} \)

Pulse Damping: \(\alpha \)
Perturbative Diffusivity is Measured Experimentally through Heat Pulses

- Propagation of diffusive heat pulses in plasma can be used to measure perturbative diffusivity.

- Heat pulses generated with partial sawteeth crashes, modulated ECH, etc. [Creely NF 2016, Cardozo PPCF 1995, Ryter PPCF 2010]

- Perturbative diffusivity calculated here with Extended-Time-to-Peak Method for partial sawteeth [Tubbing NF 1987, Creely NF 2016].

\[\chi^e_{HP} \sim \frac{V_{HP}}{\alpha} \]

Velocity of Peak: \(V_{HP} \)

Pulse Damping: \(\alpha \)
Perturbative Diffusivity is Measured Experimentally through Heat Pulses

- Propagation of diffusive heat pulses in plasma can be used to measure perturbative diffusivity.

- Heat pulses generated with partial sawteeth crashes, modulated ECH, etc. [Creely NF 2016, Cardozo PPCF 1995, Ryter PPCF 2010]

- Perturbative diffusivity calculated here with Extended-Time-to-Peak Method for partial sawteeth [Tubbing NF 1987, Creely NF 2016].

\[\chi_e^{HP} \sim \frac{V_{HP}}{\alpha} \]

Velocity of Peak: \(V_{HP} \)
Pulse Damping: \(\alpha \)
New Hardware on ASDEX can Measure Radial Profiles and Correlation Length

24 Fixed Frequency Channels
6 Tunable Frequency Channels
New Hardware on ASDEX can Measure Radial Profiles and Correlation Length

- Recent upgrade from 10 channels on two systems to 30 channels on one system
- Preliminary analysis of L-modes shows that temperature fluctuation levels increase with radius:
 \[\frac{\tilde{T}}{T} = 0.48\% \]
 \[\frac{\tilde{T}}{T} = 0.63\% \]
 \[\frac{\tilde{T}}{T} = 0.80\% \]
Alcator C-Mod GYRO parameters

- Will compare experimental Q_i, Q_e, fluctuations and perturbative diffusivity to global ($r/a = 0.65 - 0.9$) nonlinear GYRO simulations.

- Simulations exhibit high physics fidelity:
 - All inputs were obtained from experiment
 - 3 kinetic species (deuterium, electrons, impurities)
 - Realistic geometry (Miller parameterization)
 - Electrostatic turbulence (E&M effects neglected due to low beta)
 - Rotation effects (ExB shear, etc.)
 - e-i, and i-i collisions are included

- Simulation box size of approximately $105 \times 120 \rho_s$
- 28 toroidal modes; ~ 500 radial grid points
- Captures long wavelength (ITG/TEM) up to $k_{\theta}\rho_s$ up to ~ 1.35
 [Candy PRL 2003]