Stabilization of Electron-Scale Turbulence by Electron Density Gradient in NSTX

J. Ruiz Ruiz1
Y. Ren2, W. Guttenfelder2, A. E. White1,
S.M. Kaye2, B. P. LeBlanc2, E. Mazzucato2, K.C. Lee3,
C.W. Domier4, D. R. Smith5, H. Yuh6

42nd European Physical Society Conference on Plasma Physics
Lisbon, Portugal, 22nd-26th June 2015

1 D.O.E. contract DE-AC02-09CH11466
Anomalous Electron Thermal Transport is Observed in All NSTX Confinement Regimes

• **Transport of electron energy** in most tokamak experiments is observed to exceed predictions of neoclassical theory.

• Theory and experiments suggest that **ETG turbulence** is a candidate for anomalous electron thermal transport in some operating regimes.

• A *microwave collective scattering diagnostic* is used at NSTX to measure electron-scale density fluctuations indicative of **high-k turbulence** \((k \rho_s > 1)\).
Critical Gradient and Critical ETG Formula

- Normalized gradient of quantity X

\[\frac{R}{L_X} = -R \left(\nabla X / X \right) \]

- Critical gradient

\[q_{r\, turb} = \chi_{GB} f(\hat{s}, q, \nabla n_e, ...) \left(\frac{R}{L_{Te}} - \left(\frac{R}{L_{Te}} \right)_c \right) \]

Nonlinear dependence Linear threshold

\[(\frac{R}{L_{Te}})_{crit} = \max \left\{ \frac{0.8R}{L_{ne}}, \left(1 + \tau \right)(1.33 + 1.91\hat{s} / q)(1 - 1.5\varepsilon)(1 + 0.3\varepsilon \, d\kappa / d\varepsilon) \right\} \]

with \[\tau = Z_{eff} \frac{T_e}{T_i} \]

Applicability: low-β, positive \hat{s} and large aspect ratio with local Miller equilibrium (Miller et al PoP 1998).
Previous Work

• First direct experimental demonstration of density gradient stabilization of e⁻-scale turbulence (*Ren et al. PRL 2011*). Shot 140620.
 - **ELM event** at t~525 ms ➔ change in density gradient.
 - Stabilization of lower-k e⁻-scale fluctuations ($k_\perp \rho_s < 10$).

• Nonlinear gyrokinetic simulations show the effect of density gradient on transport (*Ren et al. PoP 2012*). Shot 140620.

• Here, I focus on the effect of density gradient on e⁻-scale fluctuations and on the ETG unstable wavenumbers on shot 141767.
Collective Scattering is Used to Measure High-k Turbulence

- Collective/coherent scattering
 \[k \lambda_D \leq 1 \]

- Scattered power density
 \[\frac{d^2 P}{d\Omega d\nu} = P_i r_e^2 L_z |\Pi \cdot \hat{e}|^2 \left| \frac{\tilde{n}_e(k,\omega)}{V T} \right|^2 \]

- **Three wave-coupling** between incident beam \((k_i, \omega_i)\) and plasma \((k, \omega)\)
 \[\vec{k}_s = \vec{k} + \vec{k}_i \quad \omega_s = \omega + \omega_i \]

- \(\omega_i, \omega_s \gg \omega\) imposes Bragg condition
 \[k = 2k_i \sin(\theta_s/2) \]
High-k Microwave Scattering Diagnostic at NSTX

- Gaussian Probe beam: 15 mW, 280 GHz, $\lambda_i \sim 1.07$ mm, $a = 3$ cm (1/e² radius).
- Propagation close to midplane => k_r spectrum.
- 5 detection channels => range $k_r \sim 5$-30 cm⁻¹ (*high-k*).
- Wavenumber resolution $\Delta k = \pm 0.7$ cm⁻¹.
- Radial coverage: $R = 106$-144 cm.
- Radial resolution: $\Delta R = \pm 2$ cm (unique feature).

View from top of NSTX (D.R. Smith PhD thesis 2009)
Each Channel of the NSTX High-k Scattering System Detects a Fluctuation Wavenumber k

- Channel 1 detects highest k_\perp and k_t, Doppler shift is greatest ($f_D = k_t v_t / 2\pi$).
- High peak at $f \sim 0$ corresponds to stray radiation.
- Scattering region $R \sim 135-136$ cm, $r/a \sim 0.7-0.8$. (major radius 0.85 m, minor radius 0.68 m).

Shot 141767
A Set of NBI-heated H-mode Plasmas is Used to Study High-k Turbulence during Current Ramp-down

- **NBI heated**, HHFW heating is absent during the run.

- **Controlled Current ramp down** between $t = 400$ ms and $t = 450$ ms (from LRDFIT).

- Time range of interest is $t >\sim 300$ ms, covering current ramp-down phase, and after ELM event at $t \sim 290$ ms.

- **MHD activity is quiet during time range of interest.** *(cf. low-f Mirnov signal).*

- Line integrated density is fairly constant during the time range of interest.
Observed High-k Fluctuations Correlate to Local Electron Density Gradient

\[\nabla T_e \rightarrow \textbf{Drives} \text{ ETG} \]

\[\nabla n_e \rightarrow \textbf{Stabilizes} \text{ ETG} \]

Two competing effects: \(\nabla n_e \) is dominant effect.
Theory Predicts that Electron Density Gradient Can Affect the Difference $(R/L_{Te})_c - R/L_{Te}$ and Stabilize Turbulence

- Jenko critical gradient is a maximum of a R/L_{ne} term and an s/q term.

$$ (R/L_{Te})_{crit} = \max \left\{ \begin{array}{c} 0.8 R/L_{ne} \\ (1+\tau)(1.33+1.91\hat{s}/q)(1-1.5\varepsilon)(1+0.3\varepsilon \frac{d\kappa}{d\varepsilon}) \end{array} \right\} \quad \text{with} \quad \tau = Z_{eff} \frac{T_e}{T_i} $$

- Higher values of R/L_{ne} raise the critical gradient for ETG (possibly above the experimental gradient value). This should have a stabilizing effect on turbulence.
Observed Fluctuation Amplitude Correlates to Difference Between Critical and Experimental Temperature Gradient

- Total scattered power (integrated in $freq$).

 $$P_{tot} \propto \left(\frac{\delta n_e}{n_e} \right)^2$$

- $\left(\frac{R}{L_{Te}^{exp}}\right) - \left(\frac{R}{L_{Te}^{crit}}\right)$ determines linear threshold for instability.

 - $t < 320 \text{ ms}$ \(\left(\frac{R}{L_{Te}^{exp}}\right) \sim \left(\frac{R}{L_{Te}^{crit}}\right)\)
 - ETG marginally stable, no fluctuations.

 - $t > 320 \text{ ms}$ \(\left(\frac{R}{L_{Te}^{exp}}\right) > \left(\frac{R}{L_{Te}^{crit}}\right)\)
 - Fluctuations develop.

 - $360 \text{ ms} < t < \sim 520 \text{ ms}$ (gray shading)
 - Similar $\left(\frac{R}{L_{Te}^{exp}}\right) - \left(\frac{R}{L_{Te}^{crit}}\right)$ produces VERY different P_{tot}. Nonlinear evolution of turbulence motivates the use of nonlinear gyro-kinetic simulations (future work).
Time Traces of Local Electron Density Gradient Confirm its Influence on Observed Fluctuation Amplitude

- As R/L_{ne} increases, it dominates in Jenko’s formula $(R/L_{Te})_{crit} (t < 340 \text{ ms}, t > 410 \text{ ms} \& t > 515 \text{ ms})$. Fluctuations decrease during that time.

- Previous to $t \sim 320 \text{ ms}$ ETG is marginally stable with respect to Jenko critical gradient. No fluctuations are observed.

- R/L_{ne} has a stabilizing effect when it dominates Jenko critical gradient.

• Lower-\(k\) \((k_{\perp} \rho_s < 10)\) \((\delta n_e / n_e)^2\) decreases for \(398 < t < 498\) ms.
• After \(t \sim 448\) ms, higher \(k\) \((k_{\perp} \rho_s \sim 12-16)\) fluctuation levels increase. During that time, \(R/L_{ne}\) increases.
Critical Gradient Computed with GS2 Linear Runs Agrees with Jenko’s Critical Gradient

- Regime of validity of \((R/L_{Te})_{crit}\):
 - low-\(\beta\)
 - positive \(s > 0.2\)
 - not NSTX parameters. large aspect ratio

- \((R/L_{Te})_{crit}\) is explicitly calculated with GS2.

- Good agreement between GS2 \((R/L_{Te})_{crit}\) calculations and Jenko \((R/L_{Te})_{crit}\).

 \(\rightarrow\) Jenko’s critical ETG formula is assumed valid in these NSTX plasmas.

- GS2 \((R/L_{Te})_{crit}\) seems to follow \(R/L_{ne}\).
GS2 Linear Simulations Show the Wavenumbers at Maximum Growth Rate Shift to Higher k in Time

- Linear simulations compute most unstable mode ($k_r = 0$). Experimental k is found to be linearly stable.
- Low-k linear growth rates ($k_b \rho_s \leq 1$) are comparable to ExB shearing rate levels (Waltz, Miller PoP 1999).
- High-k wavenumbers corresponding to maximum linear growth rate shift towards higher-k.
- Observed fluctuations decrease as $k_b \rho_s (\gamma_{\text{max}})$ increases.

GS2 Simulations

<table>
<thead>
<tr>
<th>Channel</th>
<th>Shot</th>
<th>$k_b \rho_s$</th>
<th>f (kHz)</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>141767</td>
<td>$\sim 13-17$</td>
<td>-3 to 3</td>
<td>0.398</td>
</tr>
</tbody>
</table>

Experimental Data

- f (MHz) vs. t (s)
- P (dB) vs. f (MHz)
- γ / C_s vs. $k_b \rho_s$

Simulated Data

- $k_{\perp \text{sim}} = k_b$ ($k_r = 0$)
- γ / C_s
- Shift to higher k

Graphs

- Linear growth rates (GS2) and WM ExB shearing rate (TRANSP A02)
- $t = 0.398, 0.448, 0.498, 0.565$ s
Wavenumber at Maximum Linear Growth Rate Correlates to Electron Density Gradient and Fluctuation Amplitude

- Linear growth rates are calculated at each time: determine $\gamma_{\text{max}}/(c_s/a)$ and $k_b\rho_s(\gamma_{\text{max}})$ (black dot).

- $\gamma_{\text{max}}/(c_s/a)$ not correlated with and P_{tot} or R/L_{ne}.

- $k_b\rho_s(\gamma_{\text{max}})$ correlates to total scattered power P_{tot} and R/L_{ne} at the scattering location (cf. evolution within time panels).
Scan with GS2 is Performed to Confirm Effect of Electron Density Gradient on High-k Turbulence

- Real frequency ω_r and linear growth rate γ are sensitive when $0.8 * R/L_{ne}$ dominates Jenko’s critical gradient for ETG.

- $t = 398$ ms, $0.8 * R/L_{ne}$ term not dominant \Rightarrow γ insensitive to R/L_{ne}.

- When R/L_{ne} dominates, R/L_{ne} decreases γ and shifts $k_b \rho_s (\gamma_{max})$ to higher-k (cf. $t = 565$ ms) \Rightarrow stabilizing effect.

- $|\omega_r|$ decreases with R/L_{ne}.
Experimental Real Frequency of High-k Turbulence is Calculated by Subtracting Doppler Shifted Frequency

- Lab frame frequencies detected f_{lab} are Doppler shifted from plasma frame frequencies by $f_D = k_t v_t / 2\pi$, and $\omega_p / 2\pi = f_{lab} - f_D$.
- Obtain k_t from ray tracing calculations, v_t from CHERS measurement and TRANSPI calculations.

![Graph showing experimental real frequency of high-k turbulence calculation](image)

- P_{scat}
- $f_D \approx k_t v_t / 2\pi$
- f_{lab}
- $t = 398$ ms

- $\omega_p / (c_s / a)$
- $k \rho_s^{exp}$
- $t = 0.398$ s
- $t = 0.448$ s
- $t = 0.498$ s
- $t = 0.565$ s

<table>
<thead>
<tr>
<th>Channel 1</th>
<th>f [MHz]</th>
<th>P (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Real Frequency and GS2 Real Frequency Exhibit Similar Behavior

Exp: $k_{\perp}^{exp} = \sqrt{(k_r^2 + k_b^2)}$, $k_r/k_b >> 1$

Sim: $k_{\perp}^{sim} = k_b$ ($k_r = 0$) (Most unstable mode)

- Experimental k is linearly stable in GS2.
- $|\omega_p^{exp}|$ and $|\omega_r^{sim}|$ increase in time.
- Only 15% change in c_s/a (normalization).
- Note R/L_{ne} increases in time.
Correlation Between GS2 Wavenumbers at Maximum Growth Rate, Real Frequency and Electron Density Gradient

Compute γ_{max}, $k_b \rho_s(\gamma_{\text{max}})$ and $\omega_r/(c_s/a)$ @ ($k_b \rho_s=30$) in time, compare to R/L_{ne}.

- Low correlation between γ_{max}, and experimental R/L_{ne}.
- Correlation between $k_b \rho_s(\gamma_{\text{max}})$, $\omega_r/(c_s/a)$ @ ($k_b \rho_s=30$) and R/L_{ne}.

γ_{max}, $k_b \rho_s(\gamma_{\text{max}})$ and $\omega_r/(c_s/a)$ plots are shown with regression lines and R^2 values.
Correlation Between Experimental Wavenumber at Maximum Fluctuation Amplitude and Density Gradient

Compute \((\delta n_e/n_e)^2_{\text{max}}, k_{\perp} \rho_s @ (\delta n_e/n_e)^2_{\text{max}}, \text{ and } \omega_p/(c_s/a) @ (k_b \rho_s = 13.2)\) and compare to \(R/L_{ne}\).

- Low correlation between \((\delta n_e/n_e)^2_{\text{max}}, \omega_p/(c_s/a)\) and experimental \(R/L_{ne}\), but note similar trend as found from GS2 linear simulations (slide 20).
- Correlation between \(k_{\perp} \rho_s @ (\delta n_e/n_e)^2_{\text{max}}\) and \(R/L_{ne}\) (possible beam refraction effects on \(k_{\perp}\)).
Summary

• High-k **electron scale density fluctuations** are detected with the coherent microwave scattering diagnostic at NSTX.
• \((R/L_{Te}^{\text{exp}}) - (R/L_{Te})_{\text{crit}}\) determines linear threshold for instability, and correlates to presence of observed fluctuations.
• As local **electron density gradient** \((R/L_{ne})\) increases, it dominates Jenko’s critical ETG and is observed to have a stabilizing influence on observed fluctuations.
• Increasing \(R/L_{ne}\) produces a shift of high-k fluctuations to even higher \(k\) values (stabilizing) and decreases real frequency \(\omega_r\).
• A scan on local \(R/L_{ne}\) with GS2 linear runs shows linear growth rate \(\gamma\) and real frequency \(\omega_r\) can be very sensitive to local \(R/L_{ne}\) when it is the dominant term in Jenko’s **critical ETG**.

Future Work

• Carry out further studies for other NSTX shots with similar characteristics and compare the influence of local electron density gradient.
• Perform transport analysis to study influence of local electron density gradient in electron thermal transport.
• Carry out nonlinear gyrokinetic simulations to evaluate the effects of electron density gradient on turbulence and electron thermal transport.
Back-up slides
High-k Fluctuations Start after Small Spike in D_α and Mirnov Signal

- Before $t \sim 290$ ms, MHD activity is high. At ~290 ms, an ELM event takes place and MHD activity quiets.

- Between $t \sim 290$ ms and $t \sim 320$ ms, high-k fluctuations are absent and MHD activity is quiet.

- **High-k fluctuations** start at $t \sim 320$ ms, after small ELM event, detected in D_α and Mirnov signal.
Typical quantities in these NSTX D plasmas

- Measured fluctuation wavenumbers $k_{\text{perp}} \sim 20 \text{ cm}^{-1} \sim 2000 \text{ m}^{-1}$
- $\omega_{\text{pe}} = 2\pi*90\text{GHz}*\sqrt{\text{ne}(10^{20}\text{[m}^{-3}]}) \sim 3.6*10^{11} \text{ s}^{-1}$
- $f_{\text{pe}} \sim 57 \text{ GHz}$
- $\omega_{\text{pD}} = \omega_{\text{pe}}/\sqrt{\text{mi/me}} \sim 5.9*10^{9} \text{ s}^{-1}$
- $f_{\text{pD}} \sim 0.94 \text{ GHz}$
- $\Omega_{\text{ce}} = 2\pi*(28\text{GHz}/\text{Tesla}) \sim 8.8*10^{10} \text{ s}^{-1}$
- $f_{\text{ce}} \sim 14 \text{ GHz}$
- $\omega_{\text{pe}}/\omega_{\text{ce}} \sim 4 >> 1$ (no ECH)
- $\omega_{\text{cD}} = 2\pi*(7.6\text{MHz}/\text{Tesla}) \sim 2.4*10^{7} \text{ s}^{-1}$
- $f_{\text{cD}} \sim 3.8 \text{ MHz} >> \text{drift wave fluct (low-f)}$
- $V_{\text{te}} = \sqrt{2}*4.2*10^{5}\text{[m/s]}*\sqrt{\text{Te}[\text{eV}]} \sim 1.3*10^{7} \text{ m/s}$
- $c_s = \sqrt{2}\sqrt{\text{mi/me}} \sim 3.03*10^{5} \text{ m/s}$
- Debye length $\lambda_{\text{de}} = v_{\text{te}}/(\sqrt{2}\omega_{\text{pe}}) \sim 2.6*10^{-5} \text{ m}$
- electric collisionless skin depth $\delta_e = c/\omega_{\text{pe}} \sim 8.8*10^{-4} \text{ m}$
- Alfven velocity $v_{\text{A}} = c*(f_{\text{ci}}/f_{\text{pi}})/\sqrt{1+(f_{\text{ci}}/f_{\text{pi}})^2} \sim c*f_{\text{ci}}/f_{\text{pi}} \sim 1.21*10^{6} \text{ m/s}$
- Tor. Rotation vel. v_{t} (CHERS) $\sim 70 \text{ km/s}$
- $\beta = c_s^2/v_A^2 \sim 0.06$
- $\rho_{\text{e}} = v_{\text{te}}/(\sqrt{2}\omega_{\text{ce}}) \sim 0.1 \text{ mm}$
- $\rho_{\text{s}} = c_s/(\sqrt{2}\omega_{\text{ci}}) \sim \rho_{\text{e}}*\sqrt{\text{mi/me}} \sim 0.6-0.7 \text{ cm}$
Spatial Localization and Wavenumber Resolution

- Volume overlap of incident and scattered beams leads to poor spatial localization.
- Theory [cf. Horton Rev. Mod. Phys. 1999] predicts $k_i \sim 1/qR \ll k_\perp \Rightarrow \vec{k} \cdot \vec{B} \approx 0$

- Plasma fluctuations must satisfy:
 \[
 \begin{align*}
 k \cdot B & \approx 0 \quad (1) \quad \text{Perpendicular fluctuations.} \\
 k & = 2k_i \sin(\theta_s / 2) \quad (2) \quad \text{Bragg Condition}
 \end{align*}
 \]

- When incident beam forms a small angle with \mathbf{B}, (1) and (2) become highly dependent on \textit{toroidal curvature} of magnetic field (cf. scattered beams at P_1 and P_2 in the figure). \textbf{Oblique propagation} (outside the midplane) of incident beam exploits this phenomenon and enhances \textit{longitudinal localization} of fluctuations [cf. Mazucatto Phys. Plasmas 2003].

- For \textit{midplane propagation}, (1) and (2) are only satisfied at P_1 and P_2 and fluctuation wavenumber is purely in the \textbf{radial direction}.

- In practice, beam propagation is out of midplane, but oblique angle is small ($\sim 5^\circ$). \mathbf{k} is \textit{mostly} radial.

- Gaussian beam width dictates k and R-resolution
 \[
 A(r_\perp) = \exp(-r_\perp^2 / \omega_0^2) \\
 G(k_\perp) = \exp(-k_\perp^2 / \Delta k^2) \\
 \Delta k = 2 / \omega_0
 \]
Collective Thomson Scattering Theory is used to measure ETG-scale turbulence

- Collective/coherent and incoherent scattering

 \[\lambda_D \]

 \[e^- \]

 \[k \lambda_D \leq 1 \]

 \[\lambda_D \]

 \[e^- \]

 \[k \lambda_D \geq 1 \]

- Typical values (NSTX) \(\lambda_D \sim 10^{-5} \text{ m}, k \sim k_{\perp} < 10^4 \text{ m}^{-1} \) (high-\(k\))

 \(k \lambda_D < 1 \) (collective scattering)

- Scattered power density

 \[
 \frac{d^2 P}{d\Omega dv} = P r_e^2 L_z |\Pi \cdot \hat{e}|^2 \left| \tilde{n}_e(k, \omega) \right|^2 \frac{1}{VT}
 \]

 - \(r_e \) classical electron radius
 - \(V, L_z \) volume and length of scattering volume
 - \(\Pi \) polarization tensor
 - \(\hat{e} \) direction of incident electric field
 - \(T \) observation time
A Scan on R/L_{Te} is Performed to Compute a Critical Gradient with GS2 Linear Runs

- R/L_{Te} is varied keeping all other quantities constant. The factor is called $(R/L_{Te \text{ fac}})$.
- High-k linear growth rates saturate with decreasing (R/L_e).
- $(R/L_{Te \text{ fac}})_{\text{crit}}$ is found to be the minimum R/L_{Te} to satisfy $\gamma = 0$.

![Graph showing linear relationship between $\gamma/(C_s/a)$ and $k_\theta \rho_s$.](image)