Overview of Experimental Results and Code Validation Activities at Alcator C-Mod

IAEA Fusion Energy Conference
San Diego, October 8, 2012
M. Greenwald - presenting for Alcator Group
This talk will address the unique capabilities of C-Mod for validating physics relevant to ITER

- All metal walls and reactor-like heat fluxes
- RF scenarios at ITER B_T, n_e, RF frequencies
- Transport studies without core particle or momentum sources
- RF actuators
- Core Transport
- Pedestals and Edge Barrier Physics
- Boundary Plasmas/Plasma Wall Interactions
- Disruptions
An Innovative ICRF Antenna Has Been Developed To Address The Issue Of Metallic Impurity Generation

- Critical issue for metal machines like ITER
- Hypothesis: RF sheath rectification and acceleration of ions into wall
 - Large RF potentials measured far from antenna (*EX/P5-39 Terry*)
- Antenna designed to minimize E_\parallel
- Results:
 - Improved RF power handling
 - Reduced Mo radiation
 - Discrepancies with models remain

Field Aligned Antenna

Standard Antenna
Experiments to validate full-wave ICRF heating simulations (TORIC/AORSA/CQL3D)

- Compare to fast ion spectra
 - Generally there was good agreement with the equilibrium fast ion population and scaling with I_p and P_{ICRF}
 - Disagreement on transient formation and decay of the fast ions levels
 - (Bader NF 2012)

Comparison to RF waves in plasma (PCI)

- Agreement in Minority heating regime
- For mode-conversion regime, measured wave intensity was 50x lower than code
- Is this evidence for nonlinear effects?
 - (Tsujii PoP 2012)
LH Is An Efficient Current Driver
At The ITER B_T, Density and RF frequency

- 100% non-inductive plasmas have been achieved at 5.4T, 5×10^{19}
 - Modification of current profile leads to formation of an internal transport barrier
- At higher density ($>1 \times 10^{20}$), driven current and fast electron populations drop below simple predictions
 - Not linear wave accessibility issue

Full wave (LHEAF/VERD) FE and ray tracing models (GENRAY) find that large fraction of wave energy propagates in plasma edge and SOL at high densities
LH Is An Efficient Current Driver
At The ITER B_T, Density and RF frequency

- 100% non-inductive plasmas have been achieved at 5.4T, 5×10^{19}
 - Modification of current profile leads to formation of an internal transport barrier
- At higher density ($>1 \times 10^{20}$), driven current and fast electron populations drop below simple predictions
 - Not linear wave accessibility issue

Full wave (LHEAF/VERD) FE and ray tracing models (GENRAY) find that large fraction of wave energy propagates in plasma edge and SOL at high densities
Mechanisms connected to low single-pass absorption

- High-frequency probe measurements find evidence of PDI on high-field side
- Collisional wave damping in edge
- Loss of fast electrons created near plasma edge

Solution is to run with higher single-pass absorption (as ITER will)

- Higher T_e and/or change in poloidal location of launcher
- Additional poloidally displaced launcher is planned
Core Impurity Transport – Validation of Gyrokinetic Model

- Impurity transport studied using LBO method – well defined, non-intrinsic source
 - Time-dependent Ca18+ brightness profiles measured with x-ray-imaging
 - STRAHL used in iterative loop to determine experiment D,V profiles and experimental uncertainties
- GYRO used for nonlinear modeling and sensitivity studies
- Simultaneous agreement achieved for ion heat and impurity D and V; but not with electron heat transport
 - Extension of simulations to higher k modes does not solve discrepancy
- Parallel impurity transport theory extended to account for ICRF fast ions – agrees with observed poloidal impurity density asymmetry

\textbf{EX/P3-23 Howard}
\textbf{EX/P3-01 Reinke}
Transport Explored at Transition Between Electron and Ion Dominated Transport

- For OH discharges - simultaneous changes in
 - Energy confinement scaling; electron to ion dominated transport
 - Disappearance of higher freq. density fluctuations, T_e fluctuations
 - Flow reversal at $q \approx 3/2$ surface
 - Non-local to local heat transport
 - Edge impurity asymmetry

- In L-mode, self-generated rotation profile transitions from peaked to hollow as n_e goes from 1 to 1.2×10^{20} (at $I_p = 0.8$ MA)
 - Correlated change in momentum and impurity pinch velocities (but with opposite signs)
 - Transition is not at the predicted linear-gk ITG/TEM boundary.

- Ohmic phenomena occur at q dependent, critical density (or v^* at $q \approx 3/2$) $EX/2-2$ Rice
Thresholds and Pedestal Structure
Critical Extrapolations for ITER

- L-H power threshold
 - Density dependence is unlike power-law fit derived from multi-machine scalings
 - Threshold minimum scales with B_T (not I_p or q)
 - Significant drop in threshold power for “slot” divertor – effect of long divertor arm
 - Testing data against local and global threshold models - RDZ/Guzdar/FM3 EX/P2-04 Ma

- Pedestal structure for ELMy discharges
 - C-Mod extends pedestal pressure range
 - Pedestal width consistent with KBM-like, weak β_p scaling
 - Pedestal height matches EPED predictions, ELITE stability calculations

EX/P4-15 Hughes; EX/11-4 Groebner
I-mode Provides High Performance Without ELMs Or Impurity Accumulation

- Usually accessed by running at high power with ∇B drift in unfavorable direction
 - H-mode-like energy transport & T_e pedestal
 - L-mode-like particle transport & n_e profile
- Clear separation of particle and density barriers:
- Lack of ELMs consistent with ELITE modeling

- Encouraging extrapolation to ITER (Q ≈ 10)
 - I-mode is currently a focus of multi-machine studies (ITPA)
 - Need more information on density, power and size dependence for access

EX/1-3 Hubbard; EX/P4-22 Lin; EX/P4-15 Hughes
Short Wavelength EM Fluctuations Seen in Alcator C-Mod May Regulate Profiles in Edge Barriers

- **Weakly Coherent Mode in I-mode**
 - (200-300 kHz, $\delta f/f \approx 20-100\%$, $k \approx 1.5$ cm$^{-1}$)
 - Particle diffusivity scales with WCM amplitude
 - Energy barrier associated with drop in lower frequency fluctuations

- **Fluctuations between ELMs in ELMy H-mode**
 - (250-550 kHz, $\delta f/f \approx 30\%$, $k \approx 0.6-0.7$ cm$^{-1}$)
 - Amplitude increases as profiles recover between ELMs
 - Evidence for predicted Kinetic Ballooning Mode?
LH Waves Offer Possibility For A Pedestal and Confinement Control Tool

- Strong change in profiles, transport
 - Increase in T_e, T_i - Drop in n_e
 - 30% increase in stored energy
 - Accomplished with 0.6MW LH added to 3MW ICRF

- Order of magnitude drop in edge fluctuations

- Substantial impact, even under conditions where LH waves ($n_{\parallel} = 1.9$) do not have access to the core plasma
“Blob” Analysis Suggests A Unique Opportunity To Validate Edge Turbulence Models

- Generated in near SOL then propagate into far-SOL and to wall
- Data has huge dynamic range measured in event size, and probability
- Blobs show exponentially distributed waiting time and amplitude
- Statistical model developed (Garcia PRL 2012)
- Two numbers completely characterize process
 - Birth duration
 - Average waiting time
- PDFs and their profiles reproduced with high accuracy
Heat Flux Footprint – Connected to Midplane Edge Turbulence

- Midplane pressure maps to divertor and to divertor heat-flux footprint
 - **Width independent of** B_T, q_{95}, P_{IN} or connection length
- I_p (or B_p) is the dominant control parameter (as it is for the pedestal)
- Data at midplane point to dominance of turbulent perpendicular transport - near marginal stability
 - **MHD ballooning parameter**, α_{MHD} brings wide range of data together
- Implies importance for ratio of pressure gradient length to field curvature length
- Suggests heat footprint will scale with machine size
 - **Apparently inconsistent with multi-machine regression** – must sort out for ITER
Growth of W nano-structures have been observed in PWI test-stands

- Hypothesis: Small filaments “extruded” by helium bubbles captured in metal substrate
- Could be major source of erosion and dust production in future reactor – if process occurs in that environment

Open question: Could these processes occur, undisturbed in operating tokamak environment?

On C-Mod, careful experiments were performed to raise sample to correct temperature range (~2000°K)

- Morphology (tendrils ~100nm) and growth rates (~600nm in 13 sec) match
- Provides confidence that key growth parameters, from linear devices, can be used for prediction in future devices.
Tokamak Plasma-Wall Processes
First Time-Resolved, \textit{in situ} Measurements

- 1 MeV deuteron ion beam installed for time-resolved, \textit{in-situ} measurements of plasma-wall interactions
- reactions exploited:
 - $D + B^{11} \Rightarrow P + B^{12} + \gamma$
 (Measures boron surface coating)
 - $D + D \Rightarrow H e^3 + n$
 (Measures fuel retention)
- Time to make measurement: < 5 minutes
 - Between shots
 - Samples not removed from machine
- Measurements of boron overcoating
 - 5x reduction in boron in 1 run day
- Ability to scan wall poloidally and toroidally demonstrated
Disruption Mitigation – Radiation Symmetry Is A Critical Issue For ITER

- Using massive gas injection, C-Mod observes toroidal peaking factors 1.2-2.3
 - Peaking factor > 2 could lead to local melting on ITER
- Can 2nd valve reduce asymmetry?
- Toroidal radiation symmetry studied with multiple gas valves and array of XUV diodes
- It is possible to reduce asymmetry in pre-thermal quench by careful control of geometry and timing
- BUT.....

- Asymmetry depends on n=1 MHD and thus sensitively on magnetic geometry and q_{95}
- More asymmetry seen with faster MHD growth rates
- Modeling underway with NIMROD

\textbf{EX/P8-09 Granetz; TH/P3-13 Izzo}
Future Plans: Further Develop Unique Capabilities

- Deploy hot (1000K), continuous, solid tungsten divertor
- Required for reactor level heat fluxes in C-Mod
- Prototypical for Reactor
Future Plans: Further Develop Unique Capabilities

Exploit capabilities for in-situ measurements of plasma wall interactions
Future Plans: Further Develop Unique Capabilities

Study and Exploit Field-Aligned ICRF Antenna
Future Plans: Further Develop Unique Capabilities

Develop Advanced Off-Midplane LH Launcher

Better single-pass absorption
C-Mod IAEA Papers/Posters (1)

<table>
<thead>
<tr>
<th>Time</th>
<th>Author</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OV/2-3</td>
<td>Greenwald</td>
<td>C-Mod overview</td>
</tr>
<tr>
<td>FTP/1-1</td>
<td>Wukitch</td>
<td>Evaluation of optimized ICRF and LHRF antennas</td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX/1-3</td>
<td>Hubbard</td>
<td>I-mode</td>
</tr>
<tr>
<td>EX/2-2</td>
<td>Rice</td>
<td>Rotation reversals, LOC-SOC, and non-local transport</td>
</tr>
<tr>
<td>FTP/P1-22</td>
<td>Wallace</td>
<td>Advances in LHCD technology</td>
</tr>
<tr>
<td>EX/P2-02</td>
<td>Kessel</td>
<td>Modeling of ITER demonstration discharges</td>
</tr>
<tr>
<td>Th/1-1</td>
<td>Murakami</td>
<td>Toroidal flow generation via ICRF minority heating</td>
</tr>
<tr>
<td>EX/P2-04</td>
<td>Ma</td>
<td>H-mode thresholds</td>
</tr>
<tr>
<td>EX/P2-16</td>
<td>Shiraiwa</td>
<td>Steady-state regimes with LHCD</td>
</tr>
</tbody>
</table>
C-Mod IAEA Papers/Posters (2)

<table>
<thead>
<tr>
<th>Time</th>
<th>Author</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX/P3-01</td>
<td>Reinke</td>
<td>Parallel impurity transport and poloidal asymmetries</td>
</tr>
<tr>
<td>EX/P3-13</td>
<td>Porkolab</td>
<td>Gyrokinetic analysis of Ohmic plasmas</td>
</tr>
<tr>
<td>EX/P3-23</td>
<td>Howard</td>
<td>Gyrokinetic modeling of impurity transport</td>
</tr>
<tr>
<td>EX/P3-28</td>
<td>Fiore</td>
<td>Stabilization of ITBs by self-generated rotation</td>
</tr>
<tr>
<td>EX/P4-14</td>
<td>Delgado-Aparicio</td>
<td>Impurity generated “snakes”</td>
</tr>
<tr>
<td>EX/P4-15</td>
<td>Hughes</td>
<td>Pedestal stability and transport</td>
</tr>
<tr>
<td>EX/P4-22</td>
<td>Lin</td>
<td>NTMs in high-performance I-mode plasmas</td>
</tr>
<tr>
<td>Thursday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX/P5-03</td>
<td>Wright</td>
<td>Tungsten nano-structures</td>
</tr>
<tr>
<td>EX/P5-39</td>
<td>Terry</td>
<td>Fine-scale SOL Er structure in ICRF heated plasmas</td>
</tr>
<tr>
<td>TH/P6-11</td>
<td>Bonoli</td>
<td>LHCD Modeling</td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX/P8-09</td>
<td>Granetz</td>
<td>Symmetry of mitigated disruptions</td>
</tr>
<tr>
<td>EX/11-4</td>
<td>Groebner</td>
<td>Multi-machine pedestal studies</td>
</tr>
</tbody>
</table>

M. Greenwald, et al., IAEA October 8, 2012
Authors

Greenwald, M. 1, Bader, A. 2, Baek, S. 1, Barnard, H. 1, Beck, W. 1, Bergerson, W. 3, Bespamyatnov, I. 4, Bitter, M. 5, Bonoli, P. 1, Brookman, M. 4, Brower, D. 3, Brunner, D. 1, Burke, W. 1, Candy J. 6, Chilenski, M. 1, Chung, M. 1, Churchill, M. 1, Cziegler, I. 10, Davis, E. 1, Dekow, G. 1, Delgado-Aparicio, L. 5, Diallo, A. 5, Ding, W. 3, Dominguez, A. 5, Ellis, R. 5, Ennever, P. 1, Ernst, D. 1, Faust, I. 1, Fiore, C. 1, Fitzgerald, E. 1, Fredian, T. 1, Garcia, OE. 8, Gao, C. 1, Garrett, M. 1, Golfinopoulos, T. 1, Granetz, R. 1, Harrison, S. 5, Harvey, R. 11, Hartwig, Z. 1, Hill, K. 5, Hillairet, J. 14, Howard, N. 1, Hubbard, A. 1, Hughes, J. 1, Hutchinson, I. 1, Irby, I. 1, Kanojia, A. 1, Kasten, C. 1, Kesner, J. 1, Kessel, C. 5, Kube, R. 8, LaBombard, B. 1, Lau, C. 1, Lee, J. 1, Liao, K. 4, Lin, Y. 1, Lipschultz, B. 1, Ma, Y. 1, Marmar, E. 1, McGibbon, P. 1, Meneghini, O. 6, Mikkelsen, D. 5, Miller, D. 1, Mumgaard, R. 1, Murray, R. 1, Ochoukov, R. 1, Olynyk, G. 1, Pace, D. 6, Park, S. 1, Parker, R. 1, Podpaly, Y. 12, Porkolab, M. 1, Preynas, M. 14, Pusztai, I. 1, Reinke, M. 1, Rice, J. 1, Rowan, W. 4, Scott, S. 5, Shiraiwa, S. 1, Sierchio, J. 1, Snyder, P. 6, Sorbom, B. 1, Soukhanovskii, V. 7, Stillerman, J. 1, Sugiyama, L. 1, Sung, C. 1, Terry, D. 1, Terry, J. 1, Theiler, C. 1, Tronchin-James, A. 7, Tsujii, N. 1, Vieira, R. 1, Walk, J. 1, Wallace, G. 1, White, A. 1, Whyte, D. 1, Wilson, J. 5, Wolfe, S. 1, Woller, K. 1, Wright, G. 1, Wright, J. 1, Wukitch, S. 1, Wurden, G. 13, Xu, P. 1, Yang, C. 9, Zweben, S. 5
Author Affiliations

1 Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
2 University of Wisconsin, Madison, USA
3 University of California, Los Angeles, USA
4 University of Texas, Austin, TX, USA
5 Princeton Plasma Physics Laboratory, Princeton, NJ, USA
6 General Atomics, San Diego, USA
7 Lawrence Livermore Laboratory, CA, USA
8 University of Tromsø, Norway
9 Institute for Plasma Physics, Hefei, China
10 University of California, San Diego, USA
11 CompX Corporation, Del Mar, CA, USA
12 National Institute of Standards and Technology, Gaithersburg, MD, USA
13 Los Alamos National Laboratory, NM, USA
14 CEA, IRFM, Saint Paul lez Durance, France