Core Density Peaking Experiments in JET, DIII-D and C-Mod in Various Operational Scenarios – Driven by Fueling or Transport?

Tuomas Tala
Core Density Peaking Experiments in JET, DIII-D and C-Mod in Various Operational Scenarios – Driven by Fuelling or Transport?

¹VTT, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
²The College of William and Mary, Williamsburg, 23187, USA
³Chalmers University of Technology, Göteborg, Sweden
⁴CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
⁵DIFFER, Eindhoven, Netherlands
⁶IPPLM, Warsaw, Poland
⁷CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
⁸MIT Plasma Science and Fusion Center, Cambridge, MA, USA
⁹Istituto di Fisica del Plasma, via Cozzi 53, Milano, Italy
¹⁰University of Wisconsin – Madison, Madison, USA
¹¹Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal
¹²Danish Technical University Physics, Lyngby, Denmark
¹³General Atomics, San Diego, USA
¹⁴University of California, Los Angeles, USA
¹⁵Commission, Brussels, Belgium
¹⁶ITER Organisation, Cadarache, France
¹⁷CRPP, Lausanne, Switzerland

*See the author list of X. Litaudon et al (2017), Nucl. Fusion 57 102001.
Do We Understand Where Core Density Peaking is Coming from?

- High density in the core is desirable for fusion $P_{fus} \sim n_e^2$

- Previous works [1-5] have identified strong dependency between density peaking and collisionality ν^* or ν_{eff}
 - Multi-machine steady state databases
 - Theory + GK modelling have identified mechanisms

- In this talk, we will clarify what is still missing:
 - Origin of the peaking (transport versus fueling)
 - Linear regression limited to database averages
 - Test of models against dedicated ν^* scans

- This is the first time when electron particle transport coefficients in H-mode have been measured in tokamaks with high resolution diagnostics yielding a unique dataset

Gas Puff Modulation Experiment to Obtain Electron Particle Diffusivity D and Convection ν

- Gas puff modulation at 2-4Hz frequency at the top of the vessel
- Both high resolution Thomson Scattering and density profile reflectometry diagnostics to follow the propagating density wave
- Modulation amplitudes of the order of 1% in the core measured
- Using perturbative approach, $\tilde{n} = A \sin(\omega t + \phi)$, and linearization and some algebra, we will obtain the electron particle transport coefficients D and ν
The Experimental Set-up for the 3-point ν^* Scans – the DIII-D Scan Here as an Example

- Collisionality scan is obtained by changing $B_T, I_P, \text{NBI power, torque and fueling}$
- Dimensionless parameters matched typically to within 10% both in DIII-D and JET
- Change in ν^* in each scan a factor of 5-6
- Excellent dataset for code validation
Five Separate Dimensionless ν^* Scans Performed in Total on JET and DIII-D – Density Peaking Increases with Decreasing ν^* in All H-mode Scenarios

Baseline ELMy H-mode

Hybrid-like scenario

DIII-D

ELMy H-mode in Hydrogen

L-mode plasma

How does I-mode on C-Mod compare?
Inward Pinch Increases with Decreasing ν^*

- Particle transport coefficients are higher on DIII-D than on JET
- Higher transport coefficients on DIII-D due to larger plasma volume and higher NBI power density and ECH consequences on the origin of the density peaking
- Lowest ν^* discharge on DIII-D jumps off the scan

Averaged over $\rho=\{0.5,0.8\}$

\[
\frac{NBI}{DIII-D} \frac{S_{NBI}}{n_e} = \frac{DIII-D}{JET} \frac{S_{NBI}}{n_e}
\]
Beam Emission Spectroscopy (BES) Data Suggests an Increase in ITG at low ν^* – Indicative of Increase in the Inward Thermo-Diffusion Pinch

Beam Emission Spectroscopy (BES), ITG range

- Low-k fluctuations ($k_\theta \rho_s < 1$) increase moderately with lower collisionality

- Higher k fluctuations ($k_\theta \rho_s \sim 1 - 5$) decrease moderately with lower ν^*

Doppler Back Scattering (DBS)

Tuomas Tala | IAEA FEC | India | 24 October 2018 | Page 8
NBI Fueling Contributes around 50-70% to the Density Peaking in JET H-mode Plasmas

- The experimental D and V show that the contribution of NBI fueling to n_e peaking is 50-70% in the ELMy H-mode scan in JET.

- This fraction is independent of ν^*.

- In this parameter regime (3-point ν^* scan) at $q_{95}=5$, $T_i/T_e=1$, $\beta_N=1.4$, $\rho*=0.003$ and $\nu^*=[0.1,0.5]$, the NBI fueling is dominant.
On DIII-D, Density Peaking from NBI is 15-30%

- The experimental D and V show that the fraction of NBI fueling is 15-30% on DIII-D

- This fraction decreases with decreasing ν^*

- Clearly JET and DIII-D are different wrt density peaking. Why?
 - NBI particle source – no, DIII-D source stronger
 - Transport – yes, Trapped Electron modes (TEM) stronger than in JET, JET is deeply ITG dominated
 - Diffusion larger on DIII-D than on JET, JET has larger confinement time, thus the source stays in the plasma way longer in JET
Model and Code Validation
GENE [1] predicts flat or even hollow (at high ν^*) density profiles, implying that the NBI particle source dominates in contributing to density peaking.

GENE in agreement with “transport versus fueling” contributions to the density peaking.

Non-linear GENE predicts also flat density profile in JET, suggesting that the NBI particle source dominates in contributing to density peaking.

JET

DIII-D

Stand-alone TGLF predicts the peaking factor in agreement with experimental density peaking.
TGLF Modelling of the JET ν^* Scan in H-mode –
NBI Source Contributes to Density Peaking at 50-90% Fraction

- TGLF [1] peaking factor from NBI source using the JINTRAC transport code [2]:
 - Low ν^*: 47%
 - High ν^*: 90%

- TGLF predicts similar results for Hybrid and ELMy H-mode in Hydrogen 3-point ν^* scans

- In L-mode, NBI source less important ~10%

- TGLF performs well against JET discharges for each ν^*

Predictive Capability of TGLF Is Good in DIII-D Provided That T_i Is Predicted Well

- TGLF predictions for the high ν^* case in agreement with experiment
- TGLF does not predict the flat T_i profile at $\rho=0.5$-0.8 for the low ν^* case
 - Leads to an overestimation of NBI contribution
- Predictive capability of TGLF is fairly good in JET and DIII-D ν^* scans except for the low ν^* case on DIII-D
TGLF simulations are in agreement with experimental peaking factors only when the predicted T_i and T_e profiles are in agreement with experimental ones.

This is also seen in stand-alone TGLF simulations.

What happens at lower ν^* in JET?
- Does NBI fueling lose its dominance to inward pinch?
Predictive Transport Modelling Can Reproduce the Lowest ν^* JET Discharges

- TGLF captures density peaking with ICRH only $T_e > T_i$
 - Very low density + 8MW of ICRH

- GENE also predicts density peaking correctly

- TGLF reproduces density peaking in low density JET hybrid plasma

- Simulation without fueling suggests ~50% NBI contribution as in the H-mode ν^* scan

Revisit database corners (no modulation)
The C-Mod discharges do not have NBI fueling – relevant information on the role of NBI fueling and I-mode particle transport is a special case with no density pedestal.

L-mode plasmas have different q-profile and T_e/T_i ratio and thus, density peaking originating from different reasons.

In line with the JET and DIII-D L-mode results, i.e. the I-mode core density peaking does not have any ν^* dependence.

Gas puff modulation was also performed on C-Mod, but the modulated density data is too noisy to able to extract the particle transport coefficients.
Conclusions: Core Density Peaking – Driven by Fueling or Transport?

- JET is NBI source dominant 50-70% and DIII-D transport dominant (only 15-30% from NBI)
 - Trapped Electron modes (TEM) play a stronger role than in JET (JET is deeply ITG dominated)
 - Lower ν^*, higher magnetic shear, larger $R/L_T e$ and higher β in DIII-D than in JET
 - JET has larger confinement time than DIII-D, thus the source stays in the plasma way longer in JET

- Validation of TGLF and GENE against the unique experimental particle transport dataset:
 - TGLF quite convincing against various experimental results provided that T_i predicted accurately enough
 - GENE qualitatively agreeing well with various experimental trends, underestimates the pinch at $T_e/T_i \sim 1$

- Density peaking (also in future devices) depends critically on the parameter regime, such as ν^*, T_e/T_i, L_{Te}/L_{Ti}, β and q-profile

- I-mode particle transport characteristics (core density peaking) are similar to those of L-mode in JET and DIII-D
Particle balance transport coefficients from the experiment in 2 steps

Inside rho<0.8
\[\frac{\partial n_e}{\partial t} + \nabla \cdot \Gamma \approx S_{NBI} \]

Steady state (1 eq 2 unknowns):
\[-D \nabla n_e + V n_e = \frac{1}{V} \int V_{S_{NBI}} dv \]

Step 1: Use perturbative approach is to obtain absolute values for the transport (takes the code validation to the next level)
 - Standard approach is to linearize using the ansatz:
 \[\tilde{n}(\rho, t) = A \sin(\omega t + \phi) \]
 \[D_{inc} = -\omega \frac{\sin \phi \cdot \int_V A \sin \phi \, dv - \cos \phi \cdot \int_V A \cos \phi \, dv}{A \phi' \cdot \langle |\nabla \rho|^2 \rangle \cdot V'} \]

Step 2: Collisionality scan is also a density gradient scan thus providing \(D_{inc} = f(\nabla n) \). Integration yields [1]:
\[D \approx \frac{1}{Vn} \int_0^{Vn} D_{inc} d(Vn) \]
Various Analysis Techniques Employed to Obtain the Particle Transport Coefficients

- Density evolution:

- In steady state:

- To disentangle transport from the source perturbative approach is needed
 - Use ansatz: \(\tilde{n} = A(\rho) \sin(\omega t + \phi(\rho)) \)
 - After some algebra [1]:

\[
D \approx -\omega \frac{\sin \phi \cdot \int_v A \sin \phi \, dv - \cos \phi \cdot \int_v A \cos \phi \, dv}{A \phi' \cdot (|\nabla \rho|^2) \cdot \nabla'}
\]

in JET

\[
v \approx -\omega \frac{(A'Y - \phi'AX) \sin \phi + (\phi'AY + A'X) \cos \phi}{A^2 \phi' \cdot (|\nabla \rho|^2) \cdot \nabla'}
\]

in DIII-D

\[
v \approx \frac{D\nabla n}{n} + \frac{1}{n} \int_v S_{NBI} \, dv
\]

Similar 3-Point ν^* Scan Performed on DIII-D – And Density Peaking Increases with Decreasing ν^* as in JET
We find good agreement between the reflectometer and Thomson Scattering up to $\rho \sim 0.6$

\[v = -\omega \frac{(A'Y - \varphi'AX) \sin \varphi + (\varphi'AY + A'X) \cos \varphi}{A^2 \varphi'V'\langle(\nabla \rho)\rangle} \]

\[D = -\omega \frac{Y \sin \varphi + X \cos \varphi}{A \varphi'V'\langle(\nabla \rho)^2\rangle} \]

\[v = \frac{\langle(\nabla \rho)^2\rangle}{\langle(\nabla \rho)\rangle} \frac{\partial n_e}{\partial \rho} D + \frac{\int V'Sd\rho}{n_e V'\langle(\nabla \rho)\rangle} \]

Source

\[X = \int V'(A \cos \varphi)d\rho \]

\[Y = \int V'(A \sin \varphi)d\rho \]
There is a clear difference in amplitude and phase behavior for the 3-point scan

- Reflectometer data came recently available for all 3 discharges – analysis is ongoing
C-Mod: Gas Puff Modulates Density in I-mode at 5.6T

ICRF (MW), Te0 (keV), D2 demand (a.u.)

NL04 (10^20 m^-2),

n_e @ R=86cm,84cm,78cm,69cm (10^20 m^-3)
No Evidence on Time-Dependent Plasma Background from Fluctuations at 3Hz

- No effect of gas puff modulation on fluctuation level from the correlation reflectometry

- The assumption of the time independent background seems justified

![Graphs showing time-dependent plasma background fluctuations](image-url)
TGLF Simulation around the Operational Parameters of the JET ν^* Scan