Hydroscaling indirect-drive implosions on the National Ignition Facility

Cite as: Phys. Plasmas 29, 062705 (2022); https://doi.org/10.1063/5.0080732
Submitted: 02 December 2021 • Accepted: 01 May 2022 • Published Online: 02 June 2022

Hydroscaling indirect-drive implosions on the National Ignition Facility

Cite as: Phys. Plasmas 29, 062705 (2022); doi: 10.1063/5.0080732
Submitted: 2 December 2021 · Accepted: 1 May 2022 ·
Published Online: 2 June 2022

K. L. Baker,1,a) O. Jones,1 C. Weber,1 D. Clark,1 P. K. Patel,1 C. A. Thomas,2 O. L. Landen,1 R. Nora,1 G. J. Anderson,1 J. Gaffney,1 S. MacLaren,1 D. T. Casey,1 T. Döppner,1 E. L. Dewald,1 R. Tommasini,1 B. K. Spears,1 J. Salmonson,1 M. Hohenberger,1 S. Khan,1 A. Zylstra,1 A. Kritcher,1 P. Amendt,1 V. Smalyuk,1 J. Lindl,1 C. Young,1 J. S. Ross,1 D. Ho,1 O. A. Hurricane,1 D. A. Callahan,1 T. Woods,1 J. L. Milovich,1 D. J. Strozzi,1 B. Bachmann,1 R. Bionta,1 P. M. Celliers,1 D. Fittinghoff,1 R. Hatarik,1 M. Gatu Johnson,3 K. Meaney,4 M. Millot,1 P. L. Volegov,4 and C. Wilde4

AFFILIATIONS
1Lawrence Livermore National Laboratory, Livermore, California 94550, USA
2Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
3Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
a)Author to whom correspondence should be addressed: baker7@llnl.gov

ABSTRACT
A goal of the laser-based National Ignition Facility (NIF) is to increase the liberated fusion energy “yield” in inertial confinement fusion experiments well past the ignition threshold and the input laser energy. One method of increasing the yield, hydrodynamic scaling of current experiments, does not rely on improving compression or implosion velocity, but rather increases the scale of the implosion to increase hot-spot areal density and confinement time. Indirect-drive (Hohlraum driven) implosions carried out at two target sizes, 12.5% apart, have validated hydroscaling expectations. Moreover, extending comparisons to the best-performing implosions at five different capsule sizes shows that their performance also agrees well with hydroscaling expectations even though not direct hydroscales of one another. In the future, by switching to a reduced loss Hohlraum geometry, simulations indicate that we can drive 20% larger-scale implosions within the current power and energy limitations on the NIF. At the demonstrated compression and velocity of these smaller-scale implosions, these 1.2/C2 hydroscaled implosions should put us well past the ignition threshold.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080732

I. INTRODUCTION

There are many approaches that attempt to improve the quality of current Hohlraum-driven capsule implosions. These include lowering the entropy (adiabat) of the imploding shell to enable higher compression1 and increasing the peak velocity. Lowering the adiabat can encompass many areas such as the initial choice of the laser pulse shape, capsule dopant to protect the ice–ablator interface from higher, more penetrating x rays, optimizing shock timing and strength and reducing hydrodynamic instabilities such that implosions behave closer to their as-designed adiabat. Other approaches such as increasing the peak velocity and hence capsule fuel imploding kinetic energy at a fixed Hohlraum radiation drive temperature lead to more capsule ablator material ablated as described by the rocket equation. This increases the threat of feedthrough of hydrodynamic instabilities and decreases the final confining capsule areal density, so in practice there is a limit to the maximum velocity that these implosions can be driven. The capsule-absorbed energy can also be increased by using a smaller Hohlraum at fixed input laser power to increase the drive temperature and hence ablation pressure and scaling up the ablator and ice thickness, keeping the radius constant.1 This approach increases the difficulty of controlling implosion symmetry. Hydrodynamic scaling, which is the subject of this study, is perhaps the lowest physics risk to increasing the performance of implosions. Hydrodscaling is accomplished by increasing the scale and hence the mass of the implosion, not by trying to improve the quality or compression of the implosion or by increasing the implosion velocity.

Hydroscaling uses hydroequivalent implosions, which are designed to achieve the same no-alpha heating stagnation pressure,
implosion velocity, shell adiabat, and scaled radiation temperature inside the Hohlraum in indirect-drive inertial confinement fusion.\(^3\)

Since the hydrodynamic Euler equations are invariant to the transformation \(x' = Sx\) and \(t' = St\),\(^{2,3}\) hydroscaled implosions lead to the same hydrodynamic behavior if the implosion velocities \(\sim x/t\) and \(x'/t'\) are kept the same. The implosion velocity can be kept the same by modifying the laser drive pulse to keep the temporally scaled radiation temperature inside the Hohlraum the same between implosions.

Figure 1 shows a schematic of the hydroscaling approach, where all spatial dimensions, \(x\), and time, \(t\), are increased by the scale factor \(S\), and the laser power, \(P_L\), is nominally increased by \(S^2\) and hence the laser energy, \(E_L\), by \(S^3\). If both the surface area of the Hohlraum, \(A_h\), and the laser power are increased by \(S^2\), then the scaled radiation temperature in the Hohlraum \(T(\sigma R_S^2)/A_hS^2\)\(^{2,25}\) is independent of scale, ignoring for the moment the fact that the losses from diffusive Marshak wave propagation into the Hohlraum wall drop in time. By maintaining the same scaled radiation temperature in the Hohlraum and modifying the capsule to maintain the same dopant optical depth and implosion velocity, the shell adiabat and no-alpha heating pressure can be maintained between hydroscaled implosions.

In Sec. II of this study, we look at the limitations of performing a direct hydroscaling on the National Ignition Facility (NIF). This section discusses both physics limitations and practical limitations. In Sec. III, we discuss two approaches to hydroscaling the capsule in the experiments to preserve the velocity, opacity, and density profiles between the hydroscaled implosions. In Sec. IV, we present the four direct hydroscaling experiments that were performed for this study. These experiments hydroscaled the entire target, both the Hohlraum and the capsule. In Sec. V, we present additional results from two sub-scale and seven full-scale BigFoot experiments that were not strictly hydroscaled implosions. These implosions bolster the results from Sec. IV, and provide further scale dependencies of other hotspot parameters. In Sec. VI, we compare the best-performing implosions spanning several drive designs and five high-density carbon (HDC) capsule scales, ranging from an inner radius of 0.844–1.05 mm. In Sec. VII, we discuss ways in which hydroscaling to larger capsules can be performed on the National Ignition Facility within the current energy and power limitations by reducing the losses of the Hohlraum to go well beyond the ignition threshold. In Sec. VIII, we summarize our results that were presented in this study.

II. LIMITATIONS ON STRAIGHT HYDROSCALING

There are several practical and physics-based limitations that prevent a strict hydroscaling of all parameters from being performed in indirect-drive inertial confinement fusion (ICF). One of the practical limitations of performing this study on the NIF is the phase plates on each of the quads of the laser. For a strict hydroscaling, the size of the elements comprising the phase plates themselves would have to be scaled to maintain the same intensity on the Hohlraum wall, which from a cost perspective is impractical. Because the phase plates are not scaled, the per beam intensity on the Hohlraum wall is higher for the larger-scale Hohlraums due to the increase in power \(\sim S^2\) for a straight scale. This higher intensity on the wall then has several potential effects, which interfere with the straight scaling. The higher intensity can cause changes to the spectrum of radiation driving the capsule, and the higher intensities, \(I\), can result in higher levels of laser-plasma instabilities, LPI. An increased level of LPI scatters more energy out of the Hohlraum from stimulated Raman and Brillouin scattering, which leads to higher hot-electron preheat of the fuel for stimulated Raman scattering and two plasmon decay and might lead to higher levels of cross-beam energy transfer, \(\sim I\), which can affect the shape of the implosion. The higher intensity for the larger-scale Hohlraums also increases the plasma temperature, where the beams interact with the Hohlraum wall plasma. This higher temperature causes a higher expansion velocity of the gold bubble from the wall, which moves the outer laser spots closer to the Hohlraum axis,\(^5\) driving the capsule harder on the pole. To maintain drive symmetry, the inner beam cone fraction for the larger-scale Hohlraums is increased from 31% to 34% for the two scales presented below.

In two-dimensional simulations, the laser energy is symmetrized in azimuth along the Hohlraum wall, which lowers the beam intensity in the simulations relative to the experiments where the laser energy is focused at discreet locations along the azimuth, at least until the wall moves in and the individual quads can begin to fill in the azimuth. As such, one would expect a P2 shape offset between experiments and simulations due to a difference in laser intensity, which should make the experiments more oblate that the two-dimensional simulations predict. This offset between experiments and simulations would be Hohlraum-diameter-dependent, and when hydroscaling the entire target, the initial intensity in the experiments scales as \(S^2\) and in the simulations as \(S\) since the beam area in the simulations increases as \(S\) but stays approximately constant in the experiments. This implies that the offset in shape between the two-dimensional simulations and experiments would change with scale.

Additional deviations from straight scaling include engineering features. Figure 2 shows an exploded view of the Hohlraum targets with each of the components. Some of these features were kept constant between the scales, including the glue attaching the fill tube to the capsule, the thickness of the tent (45 nm formvar, \(C_{31}H_{56}O_{13}\) at 1.23 g/cm\(^3\)) holding the capsule in the Hohlraum, the laser entrance hole (LEH) window (500 nm polyimide, \(C_{22}H_{10}N_{2}O_{5}\) at 1.43 g/cm\(^3\)) that holds in the low-density Hohlraum \(^{3}\)He fill gas at cryogenic...
temperatures, and the storm window (100 nm polyimide) that protects
from ice condensation on the polyimide foil. Exact dimensions of the
Hohlraum (radius, length, and LEH radius), pointing differences and
exact capsule dimensions and dopant concentrations in the capsules
slightly varied from exact scales, <1%. As we will discuss later, the fill
tubes used in the experiments either stayed the same as the scale was
changed or in some initial experiments were larger in the smaller-scale
experiments. The fill tube diameter, according to simulations, affects
the amount of material injected into the hotspot through hydrody-
namic instabilities, which could have an outsized effect on the smaller
hotspot associated with the smaller-scale implosions.

A straight scaling of the laser pulse would also lead to physics
changes between the scales and break drive symmetry equivalence. For
instance, the same energy at the front of the laser pulse (picket) is used
to burn through the unscaled thin polyimide foil and the storm window
such that a smaller percentage of energy would reach the wall. This
affects the inner beams more than the outer beams as they are primarily
used to burn through the windows and due to their longer burn through
distance in the Hohlraum gas. In the direct hydroscaling experiments
described in Sec. IV, this was partially compensated for by increasing
the energy in the foot by ~5% in the smaller-scale experiments.

Physics-based limitations for hydroscaling include the diffusive
(hence nonlinear in time) Marshak wave penetration time into the wall,
fixed capsule opacity and thermal conduction lengths, and exponentiat-
ing alpha heating. For the larger-scale Hohlraums, the length of the laser
pulse (and implosion time) is increased by the scale factor, S. The diffu-
sive Marshak wave, therefore, has a longer time to slow down as it pene-
trates into the Hohlraum wall, which results in a higher wall albedo than
present in the smaller-scale Hohlraum with a straight scale. As such to
maintain a given radiation temperature in the Hohlraum, less laser
power is required than the straight scale of S^2 would predict. At the
same time, however, more of the laser energy is scattered out of the
Hohlraum due to LPI, as mentioned above for the larger-scale
Hohlraums because the phase plates are not scaled. As discussed below,
to account for this, the power was scaled as S^{1.6} vs the straight S^2 scaling.

A larger-scale capsule also leads to a longer hotspot temperature gradi-
ent, reducing thermal conduction losses, and to a higher hotspot areal
density, increasing the fraction of the alpha particles redepositing their
energy. Both effects lead to higher hotspot temperatures. The former
leads to an additional yield contribution scaling as S^{0.4}.3

Another physics limitation is how the ablation front and fuel-
ablator growth factors scale when two implosions are hydroscaled.
Two-dimensional radiation hydrodynamic simulations indicate that
the ablation front growth factors, ~exp^{\eta}, increase with scale due to
the fixed ablation front scale length L, as shown for four different
scales in Fig. 3(a) vs mode number \ell. This can be understood from the
following widely used analytic approximation for the ablation front
RT growth factors for a capsule of initial radius R subject to a fixed
ablation rate v_a and resultant fixed in time acceleration g:\]
\[c_a/v_a = \left(\frac{1 + \ell L/S}{\ell + L/S}\right)^{1/2} \frac{v_a^2}{R}
\]
where the final expression uses the hydroequivalences R and t ~ S and g
~ R/t^2 ~ 1/S. In particular, the scale length term breaks the hydroequiva-
cence as \ell gets larger, reducing the ablation front scale length stabiliza-
tion term (1 + \ell L/S) as S increases as seen in Fig. 3. This leads to the peak
ablation front growth factors increasing like S^{0.74}, as shown in Fig. 3(b),
and the peak gradually shifting to a higher mode number as S^{0.74}.

\[\eta \sim \sqrt{\left[\frac{g(\ell L^2/R)}{(1 + \ell L/R)}\right] - v_a t L/R}
\sim \sqrt{\left[\ell / (1 + L/S)\right] - v_a \ell}
\]
Another potential source of hydrodynamic instability growth is at the DT ice–ablator interface for which the growth factor classically scales as \(\gamma \sim \sqrt{A t^2/R} \) and hence as \(\sqrt{A} \), where \(A \) is the Atwood number describing the normalized density difference between the DT ice and nearby ablator (assumed positive for growth).

The capsule thickness and dopant concentration can be adjusted to keep the same Atwood number when hydroscaling and, therefore, keep the ice–ablator growth factors scale invariant in the simulations. The ablation front growth factors are also strong functions of the level of dopant concentration in the capsules through changing both \(L \) and \(v_a \) once the ablation front has reached the doped layer by peak power. For example, the current manufacturing capabilities led to \(\sim 12.5\% \) higher and \(\sim 16\% \) lower requested vs delivered dopant concentration as discussed in Secs. IV and V, respectively. A 14% increase in dopant percentage can increase the peak ablation front growth factors by \(\sim 18\% \). We note that recent work on direct-drive cylindrical implosion experiments has reported that deceleration-phase Rayleigh–Taylor instability growth in those experiments could be kept scale invariant, maintaining the same growth factors to within \(\pm 15\% \) with a factor of three difference in spatial scales.

III. HYDROSCALING THE CAPSULE

A. Scaling Capsule Thickness \(\propto S^{0.7} \) and Dopant \(\propto S^{-1} \)

In a strict hydroscale, all of the dimensions of the capsule would be scaled by \(S \). However, two-dimensional radiation hydrodynamic simulations suggest that maintaining the same density profile and velocity when hydroscaling a capsule to a smaller scale can be accomplished using an ablator thickness slightly thicker than a straight scale and increasing the dopant level as \(1/S \). The dopant adjustment is necessary to conserve the fixed ablator optical depth to hard x rays. The hard x-ray preheat distribution that is set by this optical depth is also an important factor in controlling the density distribution of the shell in flight and hence needs to be conserved to maintain similar hydrodynamic stability in the implosion. The thickness scaling is necessary to conserve the shell implosion velocity after the dopant concentration has been appropriately adjusted. This is the approach taken in Sec. IV. Figure 4(a) shows the results from a capsule-only simulation with the density and temperature profiles as a function of scaled radius for three different scale implosions. In particular, as the scale is increased from 1 to 1.2, the capsule thickness is decreased by \(5 \mu m \) less than a straight scale, removed from the outermost undoped layer. This has the effect that the outer layer thickness sublinearly increases as \(S^{0.7} \) and that the total mass of the HDC ablator increases slower than \(S^1 \), as \(\sim S^{0.6} \). Figure 4(b) shows that the implosion velocity as a function of scaled time can be matched using this prescription. These simulations suggest that if this capsule scaling prescription is followed the two implosions share the same velocity and density profile inside the capsule. In the case of a smaller-scale capsule, which was \(67 \mu m \) thick and had a dopant layer concentration of \(0.32\% \), a 1.125 scale factor would then imply that a larger-scale capsule would be \(72 \mu m \) thick (\(67 \times 1.125^{0.7} \)) and have a W dopant layer concentration of \(0.28\% \) (0.32/1.125).

B. Scaling Capsule Thickness \(\propto S \) and Dopant \(\propto S^{-2} \)

Two-dimensional radiation hydrodynamic simulations also indicate that if all the dimensions in the capsule are scaled by \(S \) and the opacities of the entire capsule scaled by \(S^{-1} \) that the mass remaining and fuel velocity are preserved, the latter is shown in Fig. 5(a). In addition, unlike the scaling in Sec. III A, the ablation front scale length also scales, as shown in Fig. 5(b), which preserves the ablation front growth factors as the capsule is hydroscaled. The opacity of the undoped HDC material, however, cannot be reduced by \(S^{-1} \) in experiments, but the doped layer can be decreased by more than \(S^{-1} \) such that the entire opacity of the ablator is reduced by \(\sim S^{-1} \). This approach was taken in Sec. V. All the capsule dimensions were scaled by \(S \), but in order to recover the Atwood number and approximate a reduction in the entire capsule of \(1/S \), the dopant concentration was more strongly increased, approximately as \(S^2 \). For example, a smaller capsule \(64 \mu m \) thick with a \(0.35\% \) W dopant layer hydroscaled by a factor of \(S = 1.125 \) leads to a \(64 \times 1.125 = 72 \mu m \)-thick capsule containing a \(0.35/1.125^2 = 0.28\% \) W dopant layer. Figure 5(c) compares two-dimensional simulations of the density profile as a function of scaled radius for the larger scale, N180128, vs subscale implosion with the dopant increased by \(S \) and \(S^2 \). There is very good agreement in the density profiles at the three times between the larger-scale implosion and the directly scaled smaller implosion with the dopant increased by \(S^2 \).
IV. DIRECT HYDROSCALING EXPERIMENTS: CAPSULE THICKNESS S$^{0.7}$

A direct hydroscaling campaign was conducted on the National Ignition Facility based on the shot yielding the highest inferred yield amplification (alpha heating contribution) on the NIF at the time, N180128. This campaign hydroscaled the entire system downward, both the capsule and the Hohlraum by a scale factor of 1/1.125. Scaling the entire system to a larger dimension, both capsule and Hohlraum, was not possible in cylindrical Hohlraums due to limitations in laser power and energy. A split schematic of the two target scales is displayed in Fig. 6, which shows the smaller scale on top and the larger scale on the bottom. The BigFoot platform was used for these experiments, whose salient characteristics are described in Appendix A.2,10,12–15

A. Experimental Parameters and 1D Results

The capsules used in the larger-scale shots, had an inner radius of 950 μm, were 72.3 μm thick with an inner clean layer of 6.3 μm, a W-doped HDC layer that was 21.4 μm, and a clean outer layer that was 44.5 μm thick. The smaller-scale capsules, had an inner radius of 844 μm, an ablator wall thickness of 68.3 μm with an inner clean layer that was 40.4 μm thick. This capsule scaling was intended to follow the prescription detailed in Sec. III A. The as-delivered smaller-scale capsules were thicker than requested, 68.3 vs 66.7 μm, and had less dopant than requested, a dopant ρR of 5.26 vs 6.0 μm%. The reduced dopant in the smaller-scale capsules reduced the ablation front growth factors in those implosions by a larger degree than the $S^{0.7}$ scaling indicated above for the idealized scaling as shown in Fig. 7, which shows two-dimensional growth factors from a set of capsule-only simulations. The ice layer formed on the inside surface of the HDC shell was hydrodynamically scaled along with the capsules with the larger capsules containing a 49.6-μm-thick ice layer and the smaller-scale capsules containing a 44.5-μm-thick ice layer.

The pulse shapes for the two scales are shown in Fig. 8. The pulse shape for the larger scale Hohlraum, N180128, is shown as the solid black line and for the smaller scale, N190617, as the solid red line. Two scaled versions of the larger scale pulse are also shown. Both are scaled in time, $t' = t/S$. The dashed black line is scaled in power by $S^{1.44}$ and the solid blue line by S^{2}. The scaling by S^{2} represents a straight Euler scaling. To maintain the same temperature while accounting for the lower wall albedo reached in the shorter pulse, smaller-scale Hohlraum necessitates weaker power scaling $\sim S^{1.6}$. In addition, because the smaller-scale capsules were delivered thicker...
than requested, an even slower power scaling was used, \(S^{1.44} \), to maintain the implosion velocity.

The radiation temperature profiles for the two scales were measured using the DANTE x-ray power diagnostic. Unfortunately, during the time period that the two larger-scale implosions, N180128 and N180909, were conducted, there was an issue with the diagnostic’s clipper circuit, which saturated the signals when channel voltages were too high, near peak power. DANTE was available when the same laser pulse shape was used in a gold-lined uranium Hohlraum, N190730. It is expected that the gold-lined uranium Hohlraum increases the peak radiation temperature inside the Hohlraum by as much as 1.8% over that of a gold Hohlraum due to the increased wall albedo. Figure 9 shows the radiation temperature profile from the full-scale gold-lined uranium Hohlraum, N190730, as the solid red line and from the subscale gold Hohlraum as the solid black line, N190617. The timescale for the larger scale shot, N190730, has been Euler scaled, \(t' = t/1.125 \), to better compare the two temperature profiles. The radiation temperature for the smaller-scale experiment, N190617, is at a slightly higher temperature than the full-scale experiment, N190730, because the power was increased to account for the slightly thicker than requested capsule so as to maintain the implosion velocity. This shot was expected to have a higher fluence by \(\sim 7\% \) at peak power than the gold Hohlraum.

Figure 10 shows ten measured 1D hotspot parameters for the four hydroscaling implosions plotted as a function of the capsule scale. All data scaling is in agreement with the listed analytic scaling within error bars. The reasons for the bifurcation between pairs of shots in yield, yield amplification, and other hotspot parameters are due to low-mode perturbations as discussed in Sec. IV.B.

B. 2D Results: Corrections for Low-Mode Perturbations

The implosions are degraded by numerous low-mode perturbations. The low-mode perturbations are caused by the inner beam cone fraction used, cross-beam energy transfer (CBET) between cones near the LEH, the laser delivery and drift over time, capsule thickness variations, time-dependent Hohlraum wall motion, Hohlraum perturbations, and Hohlraum misalignment. The two largest low-order degradation mechanisms are due to \(m_1/P_1 \) and \(P_2 \) Legendre modes. The \(P_1/m_1 \) degradations can be expressed as the difference in the max and min of areal density divided by the average areal density. Figure 11 shows the areal density sky measured by fNADs for each of the four implosions used in the direct hydroscaling campaign, which can be used to infer degradations from \(m = 1 \) low-mode asymmetries. The primary neutron images show the P2 degradation from the four implosions as displayed in Fig. 12.

The fNAD data and the hotspot shape both indicate that the pairs of shots N180128 and N190721 have similar low-mode perturbations as do the pair of shots N180909 and N190617. The first full-scale pair and subscale pair, N180128 and N190721, have virtually the...
same, extremely small, degradation from shape, P2, and from P1/M1. In the case of the second pair, the subscale shot N190617 has a larger P2/P0 but smaller M1/P1 than the full-scale shot, N180909, so the degradation mechanisms are expected to counterbalance one another.

We thus feel justified to take the ratio of the total yields for each pair separately yielding $1.95 \times 10^{16}/1.07 \times 10^{16} = 1.82$ and $1.35 \times 10^{15}/7.45 \times 10^{15} = 1.81$, the same number within the 3% error bars. These numbers would imply a yield scaling of $Y \propto S^{0.05}$ for a scale factor, S, of
1.125. In estimating the scale dependence, however, we must remove the velocity dependence from the yields since the yield dependence on velocity is so high, \(\sim v^{10} \).

C. Velocity-Corrected Yield Scaling

The hydroscaling campaign had planned to do two one-dimensional convergent ablator experiments (1D-ConA) with a tritium-hydrogen-deuterium THD ice layer to directly measure the implosion velocity of the subscale and full-scale implosions.\(^{24}\) We completed the subscale 1D-ConA experiment that provides a benchmark for the subscale simulations, which can then be used to estimate the relative velocities of the experimental pairs. In addition, as we will discuss in Appendix B, the experimental hotspot parameters inferred from all of the layered implosions in the overall BigFoot campaign can be used to estimate the relative velocities for the pairs of shots as well. The subscale 1D-ConA experiment used a laser-irradiated iron foil placed, 12 mm from the imploding capsule, as an x-ray area backlighter. A slit was then used to image the backlighter onto an x-ray streak camera with the imploding ablator’s absorption providing the contrast. The geometry of the experiment is shown in Fig. 13(a). Figure 13(b) shows the raw radiography data, and Fig. 13(c) represents the inferred experimental radius as a function of time (red circles) from the radiograph along with a fit to the radius as a function of time using a rocket model\(^{24-27}\) of the implosion along with the velocity as a function of time using the same model. The inferred peak ablator velocity in the experiment was \(384 \pm 6 \) km/s.

The ablator velocity in the 1D-ConA experiment is used to estimate the velocity of the ice layer in a DT implosion. According to simulations, the DT ice layer would be traveling at \(\sim 6\% \) higher velocity than the ablator material due to convergence effects, continuity equation, which would imply a peak implosion velocity (ice layer) in the 1D-ConA of \(\sim 407 \pm 10 \) km/s. The 1D-ConA operated at a reduced energy relative to the layered implosions due to large uncoated windows in the Hohlraum for the 1D-ConA and two missing quads used to backlight the capsule. The implosion velocity, \(v_{\text{imp}} \), is related to the radiation temperature, \(T_r \), by \(v_{\text{imp}} \propto T_r^{3.26} \). The radiation temperature, \(T_r \), is also related to the laser energy, \(E_L \), by \(E_L \propto T_r^{3.5} \) such that \(v_{\text{imp}} \propto E_L^{0.65} \). When the reduced energy in the 1D-ConA relative to the layered implosions (laser delivery and the loss of two backlighter quads), \(\sim 70 \) kJ, and the lossy uncoated 1D-ConA windows (0.65 mm\(^2\)), \(\sim 10.5 \) kJ, are accounted for, and the peak velocity for the layered DT implosion, assuming \(v_{\text{imp}} \propto E_L^{0.65} \), would be \(407(1.35/1.27)^{0.65} \sim 428 \) km/s. Rocket model estimates of the peak implosion velocities for the four-layered implosions, N180128, N180909, N190617, and N190721, were determined to be 423, 424, 421, and 419 km/s, respectively. The rocket model estimates of N190617 and N190721 closely match the inferred DT-layered velocity from the 1D-ConA experiment of 428 km/s. Using the rocket model velocity estimates, the ratio of the total yields for the first full-scale and subscale pair, N180128 and N190721, is \(1.95 \times 10^{16}(419/423)^{10/1.07} \). The ratio of the total yields for the second full-scale and...
subscale pair, N180909 and N190617, is 1.35/1016(421/424)10/7.45/1015. Averaging these two results together implies an average yield ratio of 1.67 or a yield dependence $a_{4.4}$, consistent with analytic scaling of $S^{4.4-4.7}$. The relative velocities of the four implosions, and hence the corrected yield dependence on scale, can also be estimated using the data from the entire BigFoot campaign as detailed in Appendix B.

V. COMPARISON OF SUBSCALE AND FULL-SCALE BIGFOOT SHOTS WITH VARYING IMPLOSION VELOCITIES: CAPSULE THICKNESS $\times S$

Over the course of the development of the BigFoot platform, described in Appendix A, two different Hohlraum sizes were utilized, which were approximately hydrodynamic scales of one another as shown in Fig. 6. The initial set of layered implosions was carried out at a design adiabat of four, a_4. In all cases, the capsules in these experiments were HDC ablators doped with tungsten (W) to shield the ice–ablator interface from x-ray preheat. The two lowest velocity implosions were carried out in a gold Hohlraum, 5 mm in diameter by 10.13 mm long, with an HDC capsule, which had an average 844-µm inner radius and 64.5-µm-thick HDC layer, containing 0.24% W dopant layer. The next few layered implosions were carried out in a hydrodynamically scaled gold Hohlraum with a scale factor of 1.125, 6 mm in diameter by 11.3 mm long, and capsules with an average 950-µm inner radius and a 72.3-µm-thick HDC layer. The exact capsule parameters are listed in Table I, where all the dimensions in the capsule are nominally scaled by S, but the dopant concentration remained unscaled on average instead of by S^{2}. The two smaller-scale capsules used 10-µm-diameter fill tubes and the larger-scale implosions used 5-µm-diameter fill tubes. Recent symcap experiments using 10-µm fill tubes have estimated the injected mass at 90 ng, which should reduce the yield of the smaller capsules relative to the larger capsules.

The pulse shape was also not a perfect hydrodynamic scale between the two sizes, which resulted in small differences in the implosion velocities for the larger-scale Hohlraums and the smaller-scale Hohlraums (Table II).

A. Experimental Results

The yield from the first five-layered implosions in the Big Foot platform is shown in Fig. 14 as a function of velocity at the two scales (Table III). Both scales are well fit by a power law with the yield proportional to v_{imp}^{8} and $S^{5.7 \pm 0.4}$. This is higher than the simulation-based scaling at low-yield amplification of $S^{4.4-4.7}$. We postulate that the larger

TABLE I. Hohlraum and capsule dimensions for each of the layered implosions presented.

<table>
<thead>
<tr>
<th>Shot</th>
<th>Inner radius</th>
<th>Total thickness</th>
<th>W (%)</th>
<th>Fill tube</th>
<th>Ice layer</th>
<th>Inner clean layer</th>
<th>Doped layer</th>
<th>Outer clean layer</th>
<th>D_H</th>
<th>L_H</th>
<th>D_{LEH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N161030</td>
<td>844</td>
<td>63.8</td>
<td>0.24</td>
<td>10</td>
<td>40.5</td>
<td>5.4</td>
<td>18.5</td>
<td>39.9</td>
<td>5.4</td>
<td>10.13</td>
<td>3.46</td>
</tr>
<tr>
<td>N170109</td>
<td>844</td>
<td>65.3</td>
<td>0.23</td>
<td>10</td>
<td>41.0</td>
<td>6.3</td>
<td>19.9</td>
<td>39.2</td>
<td>5.4</td>
<td>10.13</td>
<td>3.46</td>
</tr>
<tr>
<td>N170524</td>
<td>950</td>
<td>72.6</td>
<td>0.13</td>
<td>5</td>
<td>45.6</td>
<td>3.4</td>
<td>21.4</td>
<td>47.9</td>
<td>6.0</td>
<td>11.3</td>
<td>3.9</td>
</tr>
<tr>
<td>N171015</td>
<td>950</td>
<td>72.2</td>
<td>0.21</td>
<td>5</td>
<td>45.4</td>
<td>5.7</td>
<td>20.9</td>
<td>45.7</td>
<td>6.0</td>
<td>11.3</td>
<td>3.9</td>
</tr>
<tr>
<td>N171029</td>
<td>950</td>
<td>72.2</td>
<td>0.21</td>
<td>5</td>
<td>45.3</td>
<td>5.8</td>
<td>20.8</td>
<td>45.6</td>
<td>6.0</td>
<td>11.3</td>
<td>3.9</td>
</tr>
<tr>
<td>N180128</td>
<td>950</td>
<td>72.2</td>
<td>0.28</td>
<td>5</td>
<td>49.4</td>
<td>6.3</td>
<td>21.4</td>
<td>44.5</td>
<td>6.0</td>
<td>11.3</td>
<td>3.9</td>
</tr>
<tr>
<td>N180909</td>
<td>950</td>
<td>72.1</td>
<td>0.28</td>
<td>5</td>
<td>49.6</td>
<td>6.3</td>
<td>21.7</td>
<td>44.5</td>
<td>6.0</td>
<td>11.3</td>
<td>3.9</td>
</tr>
<tr>
<td>N190617</td>
<td>844</td>
<td>68.3</td>
<td>0.24</td>
<td>5</td>
<td>44.6</td>
<td>6.3</td>
<td>21.8</td>
<td>40.5</td>
<td>5.4</td>
<td>10.13</td>
<td>3.46</td>
</tr>
<tr>
<td>N190721</td>
<td>844</td>
<td>68.3</td>
<td>0.24</td>
<td>5</td>
<td>44.5</td>
<td>6.3</td>
<td>21.9</td>
<td>40.4</td>
<td>5.4</td>
<td>10.13</td>
<td>3.46</td>
</tr>
</tbody>
</table>
size fill tubes in the smaller-scale capsule cause an apparent increase in the yield scaling as $S^{1.5}$, or $\approx 20\%$. This is consistent within error bars with other recent studies, one reporting that a 10-µm fill tube would reduce the yield by 20% when multiple degradation sources are present\(^\text{[15]}\) and another reporting 40%\(^\text{[16]}\) degradation relative to an implosion utilizing a 5-µm fill tube based on simulations and on two shots conducted on the NIF. The results from the initial experiments in the BigFoot platform are then consistent with the results in Sec. IV C and Appendix B that yield scaling starts to saturate.

VI. Comparing the Best-Performing Implosions Across Five Separate Scales

This section examines the best-performing HDC ablator implosions conducted at five distinct scales.\(^\text{[13]}\) Because the design adiabat changed between shots at different scales and details of the laser pulse shape, these implosions are not strict hydroscaleres of each other. Figure 15(a) shows the laser pulse shape for each of the five implosions. The two higher adiabat implosions, N190721 and N180128 at $\alpha \approx 4$, were the only two implosions designed to be hydroscaleres of each other. The remaining three pulse shapes (N170827, N210220, and N210207) are at a lower design adiabat, $\alpha \approx 2.5$. Figure 15(b) shows the radiation temperature driven by each of the five implosions. Although the laser pulse shapes and *Hohlraum* wall materials and sizes changed between these different implosions, the combination of these changes maintained the peak radiation temperature in all of these implosions at ≈ 300 eV.

TABLE III. Hotspot parameters for each of the initial five-layered implosions carried out in the BigFoot campaign.

<table>
<thead>
<tr>
<th>N161030</th>
<th>N170109</th>
<th>N170524</th>
<th>N171015</th>
<th>N171029</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>1.85×10^{15}</td>
<td>2.62×10^{15}</td>
<td>6.22×10^{15}</td>
<td>7.96×10^{15}</td>
</tr>
<tr>
<td>Pressure (GBar)</td>
<td>$156 \pm 16%$</td>
<td>$214 \pm 16%$</td>
<td>$222 \pm 16%$</td>
<td>$250 \pm 16%$</td>
</tr>
<tr>
<td>Y_{amp}</td>
<td>1.38</td>
<td>1.45</td>
<td>1.73</td>
<td>1.88</td>
</tr>
<tr>
<td>Bang time (ns)</td>
<td>7.23</td>
<td>7.25</td>
<td>7.88</td>
<td>7.95</td>
</tr>
<tr>
<td>DSR</td>
<td>2.61</td>
<td>2.81</td>
<td>2.88</td>
<td>2.93</td>
</tr>
<tr>
<td>T_{ion}(keV)</td>
<td>4.14 ± 0.1</td>
<td>4.16 ± 0.1</td>
<td>4.45 ± 0.1</td>
<td>4.68 ± 0.1</td>
</tr>
<tr>
<td>ρR(g/cm2)</td>
<td>0.12</td>
<td>0.14</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Burn width (ps)</td>
<td>138 ± 18</td>
<td>135 ± 36</td>
<td>138 ± 18</td>
<td>146 ± 24</td>
</tr>
<tr>
<td>V_{imp}(km/s)</td>
<td>388.3</td>
<td>392.2</td>
<td>412.6</td>
<td>418.7</td>
</tr>
</tbody>
</table>

As seen in the table, the scalings derived in this manner are on average within $\approx 40\%$ of the analytic scalings; however, most of the experiments were at a higher yield amplification, $2 \leq Y_{\text{amp}} \leq 2.9$, and as such, one would expect a higher power scaling at larger yield amplification until the yield amplification starts to saturate.
A. Capulse Mass Scaling of the Best-Performing Implosions

Figure 16 shows that the initial capsule mass for the five separate implosions fairly well matches the ideal mass scaling \(S^{2.6} \) per 2D radiation hydrodynamics codes. Plotted also in Fig. 16 is the effective dopant areal density, \(q_R \), for each of the five scales. According to the hydroscaling rules used in Sec. IV, the dopant concentration should decrease as \(S^{-1} \) as the dopant layer thickness increases so that the dopant \(q_R \) remains constant. This was not the case with two of the three lower adiabat implosions, which have considerably higher effective dopant concentration than the other three implosions. The implosion with the highest dopant \(q_R \) performed best, given its scale size, and had the highest DSR of the five implosions.

B. Performance as a Function of Scale

Plotting these five shots together as a function of scale vs yield enables us to compare the experimental performance with hydroscaling simulations over the five experimental scales and extrapolate the performance to larger scales. This is captured in Fig. 17(a) where the two high adiabat shots are shown as red circles and the three low-adiaabat shots are shown as black circles. The dashed lines represent two-dimensional radiation hydrodynamic simulations based on the high-design adiabat shot, N180128. This model adds preheat energy to the ice layer a few hundred picoseconds before the time of peak implosion velocity (over a period of 100 ps). This is designed to change the adiabat just before the deceleration phase and not affect the shock timing. It does not change the peak implosion velocity, but it does change the fuel compressibility and convergence ratio, enabling a better match to the experimental data. The dashed black line represents the design adiabat of 4 with no preheat added to the implosion. The dashed blue line represents an adiabat of 4.9 with 3.2 MJ/g added to the ice layer, and the dashed green line represents an adiabat of 5.4 with 5.4 MJ/g added to the ice. The red dashed line,

TABLE IV. Yield and velocity scaling fit to the database of hotspot parameters for the BigFoot platform-layered implosions shot at full scale, 6 × 11.3 mm² Holraum and a 950-μm I.R. HDC capsule. This table also shows the hotspot parameter scaling with scale, \(S \), given the substitution of the dependence of yield on scale along with the analytic scaling.

<table>
<thead>
<tr>
<th>Hotspot parameter</th>
<th>Velocity and yield scaling</th>
<th>Experimental scaling ass.</th>
<th>Analytic scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield amplification, (Y_{\text{amp}})</td>
<td>(Y \propto S^{4.4})</td>
<td>(Y_{\text{amp}} < 2)</td>
<td>(Y_{\text{amp}} < 2)</td>
</tr>
<tr>
<td>Hotspot areal density, (\rho R)</td>
<td>(\rho R \propto S^{0.8})</td>
<td>(S^{1.5})</td>
<td>(S^{2/3})</td>
</tr>
<tr>
<td>Hotspot temperature, (T_{\text{ion}})</td>
<td>(T_{\text{ion}} \propto S^{0.2})</td>
<td>(S^{2/3})</td>
<td>(S^{2/3})</td>
</tr>
<tr>
<td>Hotspot radius, (P_0)</td>
<td>(P_0 \propto S^{0.4})</td>
<td>(S^{1.2})</td>
<td>(S^{4/3})</td>
</tr>
<tr>
<td>Burn width, (T_{\text{bw}})</td>
<td>(T_{\text{bw}} \propto S^{0.4})</td>
<td>(S^{0.2})</td>
<td>(S^{0.2})</td>
</tr>
<tr>
<td>(R_4 - P_0)</td>
<td>(R_4 - P_0 \propto S^{0.4})</td>
<td>(S^{1.2})</td>
<td>(S^{1.2})</td>
</tr>
<tr>
<td>Hotspot mass, (M_{\text{hs}})</td>
<td>(M_{\text{hs}} \propto S^{0.8})</td>
<td>(S^{1.5})</td>
<td>(S^{1.5})</td>
</tr>
<tr>
<td>Hotspot pressure, (P_{\text{hs}})</td>
<td>(P_{\text{hs}} \propto S^{0.8})</td>
<td>(S^{0.2})</td>
<td>(S^{0.2})</td>
</tr>
<tr>
<td>Hotspot energy, (E_{\text{hs}})</td>
<td>(E_{\text{hs}} \propto S^{0.8})</td>
<td>(S^{0.2})</td>
<td>(S^{0.2})</td>
</tr>
<tr>
<td>Ignition parameter, (Z_i)</td>
<td>(Z_i \propto S^{0.8})</td>
<td>(S^{0.2})</td>
<td>(S^{0.2})</td>
</tr>
<tr>
<td>Yield</td>
<td>(\text{Yield})</td>
<td>(\text{Yield})</td>
<td>(\text{Yield})</td>
</tr>
</tbody>
</table>

FIG. 15. (a) Laser power and (b) measured radiation temperature as a function of time for the five best-performing implosions at each capsule radius.

FIG. 16. Total capsule mass (black points) and dopant areal density (red points) as a function of radius for each of the best performing implosions. Black points fit to the \(S^{2.6} \) power law from simulations.
$\alpha = 5.9$, represents a good fit to the lowest three scales and a reasonable fit to the largest scale as well. The shot N210220, whose capsule contained the highest dopant areal density, is performing at the lowest adiabat of the five shots but still far above its design adiabat. The yield amplification is then shown in Fig. 17(b), where again the hydroscaled simulation with adiabat 5.9, red dashed line, provides a good fit to four of the implosions with the shot N210220 performing at a slightly lower adiabat, 4.9. Figure 17(c) represents the experimental measurements of the down-scattered ratio, DSR, that is a measure of the DT areal density at bang time, compared with hydrodynamic simulations with alpha heating, solid lines, and without alpha heating, dashed lines. The DSR for these five implosions across the five different scales remains fairly constant, differing by only 7% even though the initial ice layer thickness varied from 40 to 65 μm, a difference of 63%. This presents the largest discrepancy between experimental results and simulation expectations. If the DSR does not increase, a large burn-up fraction of the DT ice would not be achievable. Figure 17(d) represents the experimental measurements of the ion temperature compared with hydrodynamic simulations. Again, these implosions are fit fairly well with the adiabat 5.9 simulations, with N210220 operating at a slightly lower adiabat. Though these implosions were not explicitly designed to be hydroscales of each other, their performance agrees well with hydroscaling simulations, except for the DSR scaling, and indicates that all of the implosions are operating at a much higher adiabat than they were originally designed to operate at.

VII. INCREASING THE YIELD THROUGH HYDROSCALING ON THE NIF

Hydroscaling upward both the capsule and Hohlraum as one system takes a significant amount of laser energy and power as these parameters scale as $\sim S^{2.6}$ and $S^{1.6}$, respectively. The implosions of interest are already at the power and energy limits of the NIF laser. One way to stay within the energy and power restrictions of the NIF laser is to reduce the losses in the Hohlraum driving the implosion (e.g., increasing the albedo of the walls, reducing the laser entrance hole diameters, and/or reducing the Hohlraum wall area) in order to allow a hydroscale of the implosions to a larger capsule scale. If the hydroscaling was performed in a Frustraum geometry of a smaller area-to-volume ratio, the wall area can be significantly reduced from the standard cylindrical Hohlraums while at the same time maintaining the Hohlraum case-to-capsule ratio (CCR), the diameter of the Hohlraum divided by the outer diameter of the capsule. In addition,
the CCR can be reduced some as long as symmetry control can be maintained, by scaling up the capsule, but not the Hohlraum. Both approaches require further increasing the drive to compensate for the additional capsule losses associated with the larger capsule. Appendix C quantifies the power balance between the cylinder and Frustraum geometry.

The inset of Fig. 18 shows a schematic of the Hohlraum used to drive N210220 along with a 0.85 scale Frustraum and their respective wall areas. In this case, the Frustraum has both a reduced wall area and LEH size relative to the Hohlraum. Figure 18 also shows the radiation temperature, dashed lines, and laser pulse shape, solid lines, from N210220 along with a proposed laser pulse shape and radiation temperature from a 2D radiation hydrodynamic simulation of the Frustraum, both hydroscaled in time. This figure shows that with the reduced area of the proposed Frustraum, the NIF laser can drive a 1.2× hydroscaled capsule, equivalent to a 1.2-mm inner radius HDC ablative. As shown in Fig. 17(b), the yield amplification from N210220 was determined to be 5.7, and hydroscaling to a 1.2-mm I.R. capsule along the same adiabat would push the yield amplification up to ~40. Figure 19 shows the required wall area sizes for a cylinder or a Frustraum, assuming a 3.1-mm LEH, to hydroscale an implosion from a 1050-μm IR capsule driven by a 6.4-mm-diameter, 11.24-mm-long cylindrical Hohlraum also equipped with a 3.1-mm LEH.

Another important point to consider in hydroscaling is the Legendre mode 2 (P2) intrinsic asymmetry imposed by the choice of Hohlraum geometry and hence laser illumination pattern. In order to predict the expected P2 asymmetry of a hydroscaled capsule in a Frustraum, we have taken the empirical approach described in Refs. 39 and 40 for cylindrical Hohlraums and applied it to eight previous Frustraum-based implosions. These previous experiments include two Frustraum sizes, 9.26 and 7 mm in diameter, and two capsule sizes, inner radii of 12 and 1.05 mm, respectively. This model includes the sensitivity of the measurable x-ray hotspot P2 asymmetry to capsule scale S, outer beam picket energy EOutPckt, outer beam laser spot area at the wall A, Hohlraum gas-fill density ρ, pulse duration τ, and the initial outer capsule radius rcap. The data and physics motivated X-axis parameter used in Fig. 20(a) is (EOutPckt/A)0.6(τ/ρ)0.13((r/Rhohl)ε-2.5(rcap/Rhohl)1.1. In this expression for a Frustraum, (rcap/Rhohl) is the initial outer radius of the capsule divided by the radius of the wall closest to the capsule (at 23° from the equator for a 23° wall) and (r/Rhohl)ε is the length of the laser pulse divided by the average of the wall radius where the centroid of the 44° and 50° beams hits the wall. The blue and green points in Fig. 20 are the 9.26- and 7-mm-diameter Frustraum, respectively, with a 1.2- and 1.05-mm inner radius HDC capsule, respectively. The points are well fit by a single line that is equivalent to the slope found for cylindrical implosions. The red points for a Hohlraum fill gas of 0.3 and 0.6 mg/cm³ then represent the expected core symmetry of the black pulse shape in Fig. 19 driving a hydroscaled 1.2-mm inner radius HDC capsule in the 8-mm-diameter Frustraum as shown in Fig. 19. The P2 asymmetry of both of these points should be amenable to setting to near 0 using cross-beam energy transfer, resulting from a small amount of wavelength separation, Δλ < 2 Å, applied between the inner and outer beams. For comparison, the anticipated Δλ required for reduced size cylinders to maintain a round implosion, again using the techniques in [39,40], is shown in Table V, estimated at >6 Å for a 1.2-mm inner radius HDC capsule.

VIII. SUMMARY

The ultimate goal for indirect-drive inertial confinement fusion is to achieve high gain. One approach to increasing the yield of existing implosions is hydrodynamic scaling upward of current experiments. This approach likely represents the lowest physics risk to extrapolating yield to higher fusion energies because it does not rely on improving compression, adiabat, or implosion velocity. In this study, we presented experimental results from hydroscaling of the BigFoot design, both the Hohlraum and capsule, between two scales with a 12.5% difference. In addition, we also presented BigFoot data from two scales that were not direct hydroscales but had the same design adiabat and used the same platform. Both approaches gave quantitatively similar results for the scaling of yield with scale factor, S, of Y ∝ S4.4 to S4.5, over the range of yield amplification present in those experiments, ≤2.9. By using our
previously determined scaling of hotspot parameters with yield, we were able to then obtain the scale dependence of other hotspot parameters with the scale factor S.

In addition, we compared BigFoot to three other highest-performing HDC-based implosions representing five distinct scales, different laser pulse shapes, Hohlraum wall materials, and design adiabat. However, the comparison was justifiable given that these designs used a very similar peak radiation temperature profile and adhered to the hydroscaled capsule initial mass scaling $S^{2.6}$. We find a good fit across these shots for yield, yield amplification, and ion temperature scaling. One shot had a slightly higher performance at its scale than the other four implosions attributed to the higher dopant areal density in its capsule. The inferred stagnated areal density for these five implosions, however, remains fairly constant, as found in other campaigns.41 If the areal density cannot be increased beyond the linear increase that scale provides, then it would be difficult to increase the burn efficiency of these implosions required to reach high gains.

To hydroscale to higher equivalent energy and power on the NIF, the Hohlraum losses must be reduced. We show that by using a Hohlraum design with a reduced loss area, a cylinder, or a Frustraum, the existing NIF laser can drive a $+20\%$ hydroscaled version of its highest-performing implosion N210220, which according to hydroscaling simulations would result in a yield amplification ~ 40. We also show that the symmetry of these implosions if performed in a Frustraum should be controllable with modest amounts of cross-beam energy transfer, based on empirical fits to the symmetry of eight previous Frustraum experiments. This would also allow the case-to-capsule radius ratio to be maintained for better clearance of the inner beams.

<table>
<thead>
<tr>
<th>Capsule size (µm)</th>
<th>Loss area (cm²)</th>
<th>Frustrum dimensions (mm)</th>
<th>Cylinder dimensions (mm)</th>
<th>Expected $\Delta \lambda$ (Å) for P2 control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>0.642</td>
<td>9.1 x 11.72</td>
<td>6.4 x 11.24</td>
<td>1.8</td>
</tr>
<tr>
<td>1100</td>
<td>0.624</td>
<td>8.78 x 11.3</td>
<td>6.0 x 11.3</td>
<td>2.9–4</td>
</tr>
<tr>
<td>1150</td>
<td>0.604</td>
<td>8.36 x 10.76</td>
<td>5.75 x 10.8</td>
<td>4–5.5</td>
</tr>
<tr>
<td>1200</td>
<td>0.587</td>
<td>8.07 x 10.39</td>
<td>5.55 x 10.42</td>
<td>5.7–9.6</td>
</tr>
</tbody>
</table>

FIG. 20. Empirical fit based on (a) Ref. 39 and (b) Ref. 40 of the existing Frustraum Legendre mode 2 symmetry database. The blue and green points are the 9.26- and 7-mm-diameter Frustrums driving a 1.2- and 1.05-mm inner radius HDC capsule, respectively. The red points represent the expected core symmetry of the black pulse shape in Fig. 19 driving a 1.2-mm inner radius HDC capsule in the 8-mm-diameter Frustraum shown in Fig. 19. For the green points, $M = (1.05/1.2)$, and for the red points, $M = 1$.

ACKNOWLEDGMENTS

We wish to thank the NIF operations team. This paper was prepared by LLNL under Contract No. DEAC52-07NA27344. This document was prepared as an account of the work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.
APPENDIX A: BIGFOOT IMPLOSION DESIGN

The hydroscale campaign was conducted using the BigFoot platform, which was developed at the National Ignition Facility to study inertial confinement fusion in a platform that attempted to minimize deleterious plasma physics effects and reduce hydrodynamic instabilities.\(^2\),\(^4\),\(^6\),\(^8\),\(^12\),\(^15\) The Hohlraums at both scales were filled with helium gas at 0.3 mg/cm\(^3\). A gas fill, >0.03 mg/cm\(^3\), is required to provide sufficient heat conduction to enable the production of the ice layer inside the capsule. The 0.3 mg/cm\(^3\) gas fill that was fielded on the BigFoot platform minimized the impact of laser-plasma instabilities associated with higher gas-fill densities and yet was high enough to partially tamp the expansion of the Hohlraum wall and ablative material into the laser beam paths that have been problematic at the lower gas-fill density, 0.03 mg/cm\(^3\). The two outer beam cones were separated along the length of the Hohlraum, denoted cone splitting, and the four beams comprising an individual quad were separated into two groups of two beams separated in azimuth with each group containing two orthogonally polarized beams, denoted quad splitting. These changes were made to reduce the intensity on the wall and to, therefore, help reduce stimulated Brillouin. A key advantage of the HDC ablators used in this platform is the higher density and sound speed, both about 3\times higher as compared to CH ablators.\(^2\),\(^4\),\(^6\) The high laser intensities where the outer laser beams intersect the Hohlraum drive a gold bubble that expands toward the axis of the Hohlraum and can eventually begin to absorb the inner beams for sufficiently long laser pulses, thereby removing symmetry drive control of the implosion. The higher density in the HDC ablators enables much shorter laser pulse lengths with less complications from the gold bubble expansion than in CH-based ICF platforms with much longer pulse lengths. The beam intensity reduction resulting from the cone and quad splitting also reduced the bubble expansion of the wall.

The pulse shape for the platform was also designed to minimize instability issues with the capsules. The pulse shape was a three-shock design with the foot power set to launch a first shock of at least 12 Mbar to avoid refreezing of the carbon and the seeding of nonuniformities after shock transition.\(^2\),\(^4\),\(^6\) Shock one and two were timed to merge a few \(\mu\)m before the inner ablative–ice interface. The merged first and second shocks are then timed to merge with the third shock a few \(\mu\)m after the inner ice–gas interface. This had the effect of sending three shocks through the ablative, and only two shocks through the ice such that the ablative density remained higher than the ice density and, therefore, maintained a stable, negative, Atwood number at peak implosion velocity. Two-dimensional capsule-only simulations indicate that this pulse shape, in the simulations at least, produces the most stable implosion of all the ICF campaigns that have been conducted on the NIF using HDC ablators.\(^4\).

APPENDIX B: VELOCITY-CORRECTED YIELD SCALING

The inferred and measured hotspot parameters for the entire BigFoot campaign can also be used to estimate the relative velocity between the pairs of shots as mentioned above. Our previous study on the larger-scale implosions showed that when the hotspot parameters were expressed in terms of velocity and yield that the hotspot parameters collapsed to a single power law as a function of velocity.\(^10\) By plotting velocity vs the hotspot parameter with the yield dependence removed, an effective velocity can be determined. Figure 21 shows five different hotspot parameters, with their yield dependence removed, for all of the BigFoot platform-layered implosions through N190721 plotted as a function of postshot velocity, except for the four hydroscaling implosions N180128, N180909, N190617, and N190721. The four hydroscaling implosions are evaluated for the hotspot parameter and placed on the fit of the remaining shots conducted on the BigFoot platform to estimate their velocity. In particular, the hotspot pressure is shown in Fig. 21(a), the hotspot radius in Fig. 21(b), the hotspot energy in Fig. 21(c), the hotspot mass in Fig. 21(d), and the ion temperature in Fig. 21(e). The average inferred velocities from the five plots for the four shots were 433 for N190617, 429 for N190721, 434 for N180909, and 435 km/s for N180128. That implied that N190721 was 5 km/s slower than N180128 and N190617 was 1 km/s slower than N180909. The corrected yield ratio for these pairs would then be \(1.95 \times 10^{41}[433.7-4.97]/434.71^{0.1} = 1.62\). The ratio of the total yields for the second full scale and subscale pair, N190909 and N190617, is then \(1.35 \times 10^{41}[433.9 - 1.1]/433.910^{1} = 1.77\). Averaging these two results together implies an average yield ratio of 1.7 or a yield dependence on the scale factor, \(S\), of \(\sqrt{S}^{4.5}\).

APPENDIX C: HOHLRAUM POWER BALANCE, CYLINDER VERSUS FRUSTRAUM GEOMETRY

The peak temperature in a Hohlraum can be approximated as a power balance between the x-ray power produced in the Hohlraum and the x-ray power lost to the walls of the Hohlraum, the capsule itself, and the laser entrance holes.\(^2\),\(^4\) The x-ray power produced in the Hohlraum is simply the laser power, \(P_\text{l}\), entering the laser entrance holes multiplied by the conversion factor of laser power into x rays, \(\beta\). The power lost to the walls is the x-ray flux inside the Hohlraum, \(\sigma T_\lambda^4\), multiplied by the wall area, \(A_w\), and the factor \((1 - \varepsilon_w)\), which denotes the fraction of the x-ray power that enters the Hohlraum walls and is lost to the cavity, where \(\varepsilon_w\) is the wall albedo. The power lost to the capsule is the x-ray flux inside the Hohlraum multiplied by the surface area of the capsule and the factor \((1 - \varepsilon_x)\), which denotes the fraction of the x-ray power that enters the capsule, where \(\varepsilon_x\) is the capsule albedo. The x-ray power lost to the laser entrance holes is simply the x-ray flux inside the Hohlraum multiplied by the surface area of the laser entrance holes. The power balance is then

\[\beta P_l = \sigma T_\lambda^4[A_w(1 - \varepsilon_w) + 4\pi R_{\text{CH}}^2(1 - \varepsilon_x) + 2\pi R_{\text{LEH}}^2].\]

(C1)

with the effective loss area equal to \([A_w(1 - \varepsilon_w) + 4\pi R_{\text{CH}}^2(1 - \varepsilon_x) + 2\pi R_{\text{LEH}}^2]\). The wall area of a cylindrical Hohlraum, \(A_{\text{CH}}\), with a radiussed end, \(R_{\text{cur}}\), is simply

\[A_{\text{CH}} = 2\pi R_{\text{CH}}\left[\frac{L_{\text{CH}} - 2R_{\text{cur}}}{R_{\text{CH}} - R_{\text{cur}}} + 2\left(R_{\text{CH}} - R_{\text{cur}}\right)^2 - R_{\text{LEH}}^2\right] + 2\left(\pi R_{\text{CH}}R_{\text{cur}} - \pi R_{\text{cur}}^2\right)(\pi - 2)\].

(C2)

The wall area of a Frustraum Hohlraum, \(A_{\text{FST}}\), with walls at an angle of \(\theta\) is given by
\[A_{FH} = 2\pi \left(\frac{R_{LEH}^2}{R_{FLHp}^2} \right) \sin(\theta) + 2\pi \left(\frac{R_{FLHp}^2}{R_{LEH}^2} \right) \]

(C3)

The power ratio, \(P_{\text{Ratio}} \), of the laser required to drive the same temperature profile in the respective Hohlraums is then

\[P_{\text{Ratio}} = \frac{2\pi R_{LEH,CH}^2 + 4\pi (1 - x_{\text{CAP}}) R_{\text{CAP}}^2 + (1 - x_{\text{W}}) A_{CH}}{2\pi R_{LEH,F}^2 + 4\pi (1 - x_{\text{CAP}}) R_{\text{CAP}}^2 + (1 - x_{\text{W}}) A_{FH}} \]

(C4)

To estimate the needed power and energy required to drive a hydroscale of a given implosion, the capsule and the Hohlraum are first scaled up by a factor \(S \). The laser power to drive such a scale-up has the power increased by \(S^{1.6} \) and the time stretched by the factor \(S \), hence energy increased by \(S^{2.6} \). This would then drive a radiation temperature in this scaled target that is scaled in time by the factor \(S \) relative to the initial implosion. The power needed for the reduced loss area Hohlraum to drive the same radiation temperature is then the scaled-up power profile divided by the ratio of the effective Hohlraum loss area of the new Hohlraum to that of the hydroscaled Hohlraum. The capsule size between these two Hohlraums would remain constant. As a specific example, if the target in N210220 was hydroscaled up by 20\%, the capsule inner radius would increase from 1 mm to 1.2 mm. The peak laser power would increase from 471 TW to 455 \times (1.2)^{1.6} = 631 TW and the laser energy from 1.79 MJ to 1.79 \times (1.2)^{2.6} = 2.88 MJ. N210220 used a cylindrical Hohlraum, which had a wall area of 2.9 cm\(^2\) and an LEH that was 3.64 mm in diameter. The effective wall loss area of the original Hohlraum with a 1-mm inner radius capsule was 0.71 cm\(^2\). Hydroscaling that target up by 20\% would result in a cylindrical Hohlraum with a wall area of 4.18 cm\(^2\) and an LEH that was 4.37 mm in diameter. The effective wall loss area of the hydroscaled target with a 1.2-mm inner radius capsule would then be 1.1 cm\(^2\). Placing that capsule into a reduced loss area Hohlraum of 0.59 cm\(^2\) (say a 5.55 \times 10.42 mm\(^2\) cylindrical Hohlraum or an 8.07 \times 10.39 mm\(^2\) Frustraum, both with 3.11-mm-diameter LEHs) would then enable a reduction of the peak power of the hydroscaled target of 0.59/1.1 or a 1.58 \times reduction. The reduced loss area Hohlraum then could drive the same radiation temperature for a 1.2-mm inner radius capsule with a peak power of 631 TW/1.58 = 399 TW and a laser energy of 2.88 MJ/1.58 = 1.83 MJ, both within the laser and power limits of the NIF. More examples, both cylinders and Frustraum, are given in Fig. 19 keeping the Hohlraum wall material and LEH diameter constant.

REFERENCES

