Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

Citation: Physics of Plasmas 25, 056303 (2018); doi: 10.1063/1.5017746
View online: https://doi.org/10.1063/1.5017746
View Table of Contents: http://aip.scitation.org/toc/php/25/5
Published by the American Institute of Physics
Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

M. Gatu Johnson,1,a) D. T. Casey,2 M. Hohenberger,2 A. B. Zylstra,3 A. Bacher,4 C. R. Brune,5 R. M. Bionta,3 R. S. Craxton,5 C. L. Ellison,5 M. Farrell,7 J. A. Frenje,1 W. Garbett,6 E. M. Garcia,4 G. P. Grim,6 E. Hartouni,3 R. Hatarik,2 H. W. Herrmann,3 M. Hohensee,2 D. M. Holunga,2 M. Hoppe,7 M. Jackson,7 N. Kabadi,1 S. F. Khan,2 J. D. Kilkenny,7 T. R. Kohut,2 B. Lahmann,1 H. P. Le,2 C. K. Li,3 L. Masse,2 P. W. McKenty,6 D. P. McNabb,2 A. Nikroo,2 T. G. Parham,6 C. E. Parker,1 R. D. Petrasco,1 J. Pino,2 B. Remington,2 N. G. Rice,7 H. G. Rinderknecht,6 M. J. Rosenberg,6 J. Sanchez,2 D. B. Sayre,2 M. E. Schott,7 C. M. Shuldberg,7 F. H. Séguin,1 H. Slo,1 Z. B. Walters,2 and H. D. Whitinge2

1Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA
2Lawrence Livermore National Laboratory, Livermore, California 94550, USA
3Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
4Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
5Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
6Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
7General Atomics, San Diego, California 92186, USA
8AWE plc, Aldermaston, Reading RG7 4PR, United Kingdom

(Received 29 November 2017; accepted 2 February 2018; published online 9 March 2018)

Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T2//He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1D simulations. Using data from D2//He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D1//He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis. Published by AIP Publishing. https://doi.org/10.1063/1.5017746

I. INTRODUCTION

A low-areal-density, high-yield “exploding pusher” implosion platform was initially developed at the National Ignition Facility1 (NIF) for nuclear diagnostic calibration purposes.2,3 This platform has been subsequently adapted to serve as a mono-energetic fusion product source for use in charged-particle backlighting experiments.4 It has also been used to study ion-kinetic effects in inertial confinement fusion (ICF) implosions.5 In parallel, a similar platform was also developed initially at the National Ignition Facility with applications in nucleosynthesis experiments.2,5 In addition, these low-areal-density, high-yield implosions are useful for a variety of applications, including the already mentioned diagnostic calibration, backlighting, and ion-electron equilibration experiments, but also, e.g., as a neutron source for nuclear security-relevant applications (a recent DT-gas-filled variant obtained the highest recorded yield from a non-cryogenic capsule). The present paper focuses on the use and optimization of this platform for experiments probing nucleosynthesis-relevant charged-particle-producing nuclear reactions such as 3He(3He,2p)α. However, lessons from this work will also inform future optimization of the platform for other applications.

ICF implosions provide an interesting platform for studying nucleosynthesis-relevant nuclear reactions because they allow for temperature, density, reactant distribution, and screening conditions found in stars to be closely replicated in the laboratory.8,9 In this sense, the ICF platform provides a valuable complement to accelerator experiments traditionally used to explore these reactions.10 Initial experiments to probe stellar11 and big-bang12 nucleosynthesis-relevant reactions using the ICF platform took place at the OMEGA laser facility.13 3He(3He,2p)α is of particular interest because of its role as the primary energy-producing step in the solar proton-proton-I (pp-I) chain.14 The reactivity of the 3He(3He,2p)α reaction determines the branching ratio pp-I/ (pp-II + pp-III) in the sun, and accurate knowledge of this reactivity is important for better constraining neutrino oscillation parameters.14 In addition, this 6-nucleon reaction with

aInvited speaker.
three particles in the final stage is very complicated to calculate theoretically. Measurements of the shape of the resulting proton energy spectrum will inform basic nuclear physics calculations and may also impact inference of the $^3\text{He}^\text{(He,2p)}\alpha$ reactivity from accelerator measurements (the analysis of these measurements 15,16 assumes an elliptical shape of the proton spectrum, 6 a shape which we now believe is incorrect 1). The $^3\text{He}^\text{(He,2p)}\alpha$ proton spectrum has recently been measured at OMEGA at a center-of-mass energy ($E_{\text{c.m.}}$) of 165 keV ($T_{\text{ion}} = 27$ keV). In the sun, this reaction takes place at $E_{\text{c.m.}} = 22$ keV ($T_{\text{ion}} = 1.3$ keV). The goal of the NIF $^3\text{He}^\text{(He,2p)}\alpha$ experiments is to bridge the gap between OMEGA and the sun, pushing the boundaries towards more stellar-relevant energies. (This has become even more interesting after recent measurements of the mirror $T(t,2n)\alpha$ reaction demonstrated a change in shape of the neutron energy spectrum over the relatively narrow $E_{\text{c.m.}}$ range 16–50 keV. 17) The laser energy and power available on the NIF (max 1.8 MJ, 500 TW) are much higher than at OMEGA (max 30 kJ, 30 TW). This allows NIF to generate larger plasma volumes compared to OMEGA, which enables experiments with equivalent yield, and thus similar data quality, at lower plasma ion temperature (T_{ion}) and, hence, conditions more directly relevant to stellar nucleosynthesis. 9 A challenge in this context is that the NIF beam geometry is optimized for indirect drive using a hohlraum, while direct drive is required for these experiments because the combined charged-particle energy loss in the plasma and hohlraum would be unacceptably high. The 192 laser beams are organized into two inner (23.5° and 30°) and two outer (44.5° and 50°) upper and lower cones [Fig. 1(a)], which means that directly driven implosions on the NIF are restricted to polar-direct-drive (PDD) geometries. $^{18-20}$ Symmetry in polar-direct-drive is optimized by varying the pointing of the beams onto the target 9 and/or the relative energy between the beams. 6 When the relative energy is varied, this is typically done by changing the “cone fraction,” i.e., the fraction of the total energy in the inner beams [green in Fig. 1(a)].

Initial attempts to use the NIF low-areal-density, high-yield fusion product source for nucleosynthesis-relevant experiments were described in Ref. 9. Studying charged-particle-producing nucleosynthesis-relevant reactions requires low areal density and high yield (for the $^3\text{He}^\text{(He,2p)}\alpha$ reaction, we aim for $\rho R < 10 \text{mg/cm}^2$ and yield $> 10^4$), and further development was required to optimize the platform for these measurements. This paper describes two avenues pursued to improve performance for these experiments as well as for other experiments utilizing a similar platform: (i) optimizing the laser drive and (ii) optimizing the target. The results clearly demonstrate that 1.6-mm-outer-diameter (OD) thin-glass-shell capsules [Fig. 1(b)] are more effectively driven with a square laser pulse than with a ramped pulse at equivalent energy, and that higher power can be used to achieve higher-T_{ion}, higher-yield, lower-ρR implosions (Sec. II). It is also experimentally verified that higher yield at equivalent T_{ion} can be obtained by using larger capsules; specifically, we compare results from 1.6-mm-OD SiO$_2$-shell capsules [Fig. 1(b)] and 3-mm-OD CH-shell capsules [Fig. 1(c)] (Sec. III). (The material switch is because of target fabrication considerations - SiO$_2$-shell technology is currently limited to ~2.1 mm maximum diameter.) Note that neither of the experiments described in the present paper utilizes the full energy available on the NIF (although still more than available on any other laser facility in the world). The simple reason for this is that to ensure success of the experiments, we did not want to immediately venture too far from platforms that had been previously tried. This obviously means that there is still headroom to push to even larger capsules and thus even lower T_{ion} at equivalent yield (see discussion at the end of Sec. III).

The paper is organized as follows: Section II describes how the implosions can be optimized by tuning the laser drive for 1.6-mm-OD SiO$_2$ shell implosions, Sec. III discusses optimizing the implosions by going to larger capsules, and Sec. IV concludes the paper.

II. OPTIMIZING THE LASER DRIVE

Initial experiments to study the stellar-relevant $^3\text{He}^\text{(He,2p)}\alpha$ reaction and the complementary $T(T,2n)\alpha$ and $T(^3\text{He},\text{np})\alpha$ reactions using exploding pusher implosions at the NIF demonstrated promising performance in terms of symmetry of emitted charged particle yields and spectra and reasonably low areal density, but generated a $^3\text{He}^3\text{He}$-proton yield too low for accurate study of this reaction (minimum required yield ~107, achieved yield ~4 × 105). 9 The yield was lower than expected, and this was attributed to lower than predicted T_{ion} (~6 keV achieved vs 11 keV predicted) for these ^3He-gas-filled, 1.6 mm-outer-diameter, 4.7–µm wall-thickness SiO$_2$ capsules shot with a 113-kJ, 2.1-ns-long ramped laser pulse. As a first step towards achieving high enough yields, it was decided to increase the laser power and/or energy delivered to the capsules in an attempt to increase T_{ion}. Ares21,22 and HYDRA23 simulations undertaken to optimize the drive indicated that the capsules would be more effectively driven with a square than a ramped laser pulse; in particular, the HYDRA simulations predicted lower

![FIG. 1. (a) Laser drive geometry, (b) SiO$_2$ shell capsule, and (c) CH shell capsule used in the shock-driven “exploding pusher” experiments discussed in this paper. On the NIF, the beam configuration with the 192 beams configured in 2 inner (green, 23.5° and 30°) and 2 outer (red, 44.5° and 50°) cones restricts the laser drive to polar-direct-drive geometry.](image-url)
\(\rho R\) for the square pulse drive. Figure 2 shows the 1D Ares-simulated DD-neutron yield as a function of laser-pulse rise time for a 2.0-ns duration, 125-kJ laser pulse incident on a 4-\(\mu\)m-thick, 1.6-mm outer-diameter SiO\(_2\) shell filled with 3.3 atm D\(_2\) gas. Since the laser energy and pulse duration are kept fixed in this scan, peak laser power is reduced with shorter rise time (upper scale).

A square-pulse 1D-Ares laser power/pulse duration scan (Fig. 3) was run in an effort to determine the optimal drive conditions for maximal yield at minimal T\(_{\text{ion}}\) with acceptable \(\rho R\). This scan, which spanned absorbed laser powers from 27 to 162 TW and pulse durations from 0.6–2 ns, was done for 1.51 mm-OD, 4.7 \(\mu\)m-wall SiO\(_2\) capsules filled with 5.15 atm tritium, 0.05 atm deuterium, and 2.6 atm \(^3\)He. The yield, T\(_{\text{ion}}\), bang-time, and \(\rho R\) results shown in Fig. 3 come from a free-fall analysis\(^{25}\) of the 1D-Ares simulations. (The free-fall analysis, which artificially truncates yield generated at late times in the simulations, is intended to compensate for effects of hydrodynamic instability growth and shell-fuel mixing leading to a decrease in yield for these PDD implosions. An alternative to the free-fall analysis is to use molecular diffusion multipliers to enhance mix; this approach was taken for the simulations described in Ref. 6.) The simulations indicate that T\(_{\text{ion}}\) can be expected to increase monotonically with power over the range studied [Fig. 3(b)], while yield only increases up to a point [note the roll-over for absorbed powers higher than 81 TW, Fig. 3(a)]. Predicted total \(\rho R\)s are acceptably low (<10 mg/cm\(^2\)) for absorbed power >81 TW [Fig. 3(d)]. Not surprisingly, bang time also drops monotonically with power [Fig. 3(c)]. It has been demonstrated that bang time after the end of the laser pulse is advantageous for charged-particle measurements to avoid both charged-particle yield asymmetries\(^{26}\) and energy upshifts\(^{27,28}\) due to capsule charging, so attempting to balance pulse duration to achieve bang time after the end of the laser pulse [dashed line in Fig. 3(c)] is a

FIG. 2. Simulated DD-neutron yield vs laser pulse rise time from 1D Ares simulations with a 2.0-ns duration, 125-kJ laser pulse incident on a 4-\(\mu\)m thick, 1.6-mm outer diameter SiO\(_2\) shell filled with 3.3 atm D\(_2\) gas. Since the laser energy and pulse duration are kept fixed in this scan, peak laser power is reduced with shorter rise time (upper scale).

FIG. 3. TT-n (a) yield, (b) T\(_{\text{ion}}\), (c) bang time (BT), and (d) total \(\rho R\) from a free-fall analysis of a 1D Ares power scan with a square laser pulse (0.2 ns rise time, 0.1 ns fall time) incident on a 1.51 mm outer-diameter, 4.7 \(\mu\)m-wall SiO\(_2\) capsule filled with 5.15 atm tritium, 0.05 atm deuterium, and 2.6 atm \(^3\)He. Red squares represent 27 TW, green triangles 40 TW, purple x’s 54 TW, blue diamonds 81 TW, cyan asterisks 108 TW, orange circles 135 TW, and gray crosses 162 TW absorbed laser power. The dashed red line in panel (c) indicates which part of parameter space gives bang-time before and after the end of the laser pulse, respectively (note that the rise time is included in the quoted pulse duration, while the fall time is not). The yellow stars approximately indicate the predictions for shot N161214–001 and the red stars the predictions for N161214–002 (assuming 61% absorption).
worthwhile goal. According to the simulations, extended pulse duration leads to increased T_{ion} and yield up to a power-dependent point. At further extended pulse duration, T_{ion} and yield then plateau, indicating that the laser pulse could be turned off early without detrimental impact on these parameters. (The yield saturates very rapidly with pulse duration for high absorbed laser power.)

Translating the simulated results to an experimental prediction requires an assumption about the fraction of incident laser power absorbed by the capsule. The established method for doing this is to use scattered light diagnostics to obtain a direct measurement of absorbed laser light fraction.29 This works well for symmetric direct drive on the OMEGA laser, where back-scattered light measurements in a few discrete detectors can be reliably extrapolated to a total absorbed fraction. While scattered light diagnostics are available also on the NIF,30 the PDD geometry (Fig. 1(a)) means that sophisticated modeling is required to convert the discrete detector measurements to total absorbed light fraction. (Note also that even the best available modeling capabilities of laser-plasma interactions are non-predictive and very uncertain, especially at high power.) We assume an absorbed laser light fraction of 61% for these SiO$_2$-shell implosions based on the free-fall analysis of a 1 D-Ares energy scan for TT-filled reference NIF implosion N160530–001 (1.6 mm OD, 4.7–μm SiO$_2$ shell, see Ref. 9), which found that measured bang time, yield, and T_{ion} were extremely well captured by the simulation for an absorbed laser light fraction of 61% (measured TT-n yield (8.2±1.7) x 1011, simulated 8.4 x 1011; measured bang time 2.05±0.03 ns, simulated 2.06 ns; measured DT T_{ion} 8.2±0.2 keV, simulated 8.1 keV). While this solution may well be non-unique, it is also in reasonable agreement with a pre-shot 2 D SAGE31 calculation, which predicted an absorbed fraction of 68% for this experiment.

Experimentally, the impact of laser pulse shape on implosion performance is assessed by comparing the results from three nominally identical, T$_2$/3He-gas-filled capsules (Table I) imploded with (i) a 2.1 ns, 111.3 kJ ramped laser pulse with 100 TW peak power (Ref. 9), (ii) a 1.7 ns, 60 TW, 101.2 kJ square laser pulse, and (iii) a 1.3 ns, 140 TW, 176 kJ square laser pulse. (The two square-pulse laser drives are indicated with stars in Fig. 3, assuming 61% absorption.) The laser pulse shapes are visualized in Fig. 4, along with the x-ray burn histories (or bang times) measured using the SPIDER diagnostic.35 Table II summarizes the results from the three implosions. The 5–10 MeV TT-n yield, the DT-n yield, and the DT T_{ion} are measured using the nTOF Spec detectors.33,34 The THe$^-$d yield is measured using the magnetic recoil spectrometer35 (MRS; note that only the statistical uncertainty is quoted, the systematic uncertainty is estimated to be ~20% in this charged-particle measurement due to possible fluence anisotropy around the implosion).

The D3He-p yield and mean energy ($E_{\text{D}^3\text{He-p}}$) are weighted averages of 6–7 measurements36 distributed around the implosion (see Fig. 6). The uncertainty quoted is the uncertainty in the weighted average, multiplied by χ^2_{red} for the hypothesis that the weighted average represents all measurements for the cases where $\chi^2_{\text{red}} > 1$. The deuterium impurity (which impacts DT and D3He yields) is expected to be the same for N161214–001,002, which was filled at the same time, but much higher for N160601–002.

The first thing to note is that while ramped pulse shot N160601–002 was shot with 10% higher total energy than square pulse shot N161214–001, N161214–001 gave 6±4% higher DT T_{ion}, 23±22% higher TT yield, and 88±28% higher T3He-d yield, demonstrating better performance at lower laser energy for the square pulse shot. The second important observation is the substantial increase in T_{ion} and all measured yields when going from the low-power square pulse to the high-power square pulse. This difference was enough to generate a 3He-p spectrum with excellent statistics for a 3He-gas-filled target shot with the higher-power square pulse, with a 5–11 MeV 3He-p yield of (7.2±1.6) x 1017; this spectrum will be analyzed in detail in a future publication.

An all-important question in terms of using this platform to study the shape of charged-particle spectra such as 3He-p is whether charged particles escape the implosions undistorted. In Fig. 5, D3He-proton and T3He-deuteron spectra from the three shots are compared. The D3He-p spectra represent an average of four measurements using wedge range filter (WRF) proton spectrometers36 distributed around the equator of the implosion (at ±3.5° and ±13° from diagnostic insertion modules at polar-azimuthal angles of

TABLE I. Parameters of three T$_2$/3He-gas-filled thin-glass shell exploding pushers shot with varying laser drive.

<table>
<thead>
<tr>
<th>Shot</th>
<th>Pulse shape</th>
<th>Pulse length (ns)</th>
<th>Laser energy (kJ)</th>
<th>Capsule diameter (μm)</th>
<th>Shell thickness (μm)</th>
<th>T$_2$ fill pressure (atm)</th>
<th>3He fill pressure (atm)</th>
<th>Initial density (mg/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N160601–002</td>
<td>Ramp</td>
<td>2.1</td>
<td>111.3</td>
<td>1594</td>
<td>4.6</td>
<td>2.65</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>N161214–001</td>
<td>Square</td>
<td>1.7</td>
<td>101.2</td>
<td>1511</td>
<td>4.7</td>
<td>2.63</td>
<td>5.38</td>
<td>1.33</td>
</tr>
<tr>
<td>N161214–002</td>
<td>Square</td>
<td>1.3</td>
<td>176.0</td>
<td>1512</td>
<td>4.6</td>
<td>2.63</td>
<td>5.37</td>
<td>1.33</td>
</tr>
</tbody>
</table>

![FIG. 4. As-shot laser power (absolute scale, solid lines) and x-ray burn history as measured using SPIDER (arbitrary scale, broken lines) for N160601–002 (ramped pulse, dashed burn history, black), N161214–001 (low-power square pulse, dashed-dot burn history, gray), and N161214–002 (high-power square pulse, red). SPIDER saturated for N161214–002. A bang time can be inferred from the data (red vertical line with dotted lines representing the error bar), but the absolute burn history is very uncertain and therefore not shown.](image)
The nominal D₃He-p and T₃He-d birth energies are indicated measured using MRS at polar-azimuthal angles of 73° in the form of a low-energy tail (most likely due to show substantial deviation from the nominal Gaussian shape clearly downshifted in energy compared to nominal and also power shots N160601–002 and N161214–001 are very dashed vertical lines in Fig. 5. The spectra from low-power shots N160601–002 and N161214–001 are very clearly downshifted in energy compared to nominal and also show substantial deviation from the nominal Gaussian shape in the form of a low-energy tail (most likely due to ρR variation in time in this direction). Spectra from higher-power shot N161214–002 are much more symmetric in shape. Note that these spectra are slightly upshifted in energy relative to nominal; this is expected when the bang time happens right at the tail end of the laser pulse (compare Fig. 4). It is expected that truncating the higher-power laser pulse early, at 1.0 ns, would eliminate this problem without detrimental impact on yield (compare Fig. 3, which indicates that the pulse duration at this power setting could be reduced to 1.0 ns without losing yield).

In Fig. 6, mean D₃He-p energies and yields are shown versus position for all three shots (average values are summarized in Table II). Note that the deuterium impurity in the fuel is noticeably lower for shots N161214–001/002 than for shot N160601–002, leading to substantially lower D₃He-p yield for N161214–001 than for N160601–002. The uncertainty in the WRF analysis is larger for N161214–002 than for N160601–002 in spite of comparable yields; this is because of the higher T₃He-deuteron yield on N161214–002, which limits how long the CR-39 detectors used in the WRF spectrometers37 can be etched without overlap issues, (N161214–002 data were etched for 1.5 h, N160601–002 data were etched for 3 h.) In principle, widths can be inferred from the measured spectra as well. Width numbers are not shown in Fig. 6 since the spectral width is not very meaningful for N160601–002 and N161214–001 due to large spectral distortions, and very uncertain for N161214–002 due to the short etch time.

From Fig. 6, we conclude that energies are more symmetric for the higher laser power implosion. The indication is that yields are more symmetric as well, but the large error bars on the N161214–002 data prevent any firm conclusions on this point. (Again, in order to avoid upshifts, we would need to truncate the laser pulse used on N161214–002. Bang after the end of the laser pulse is also expected to reduce yield variations around the implosion.26) In Fig. 7, x-ray images of the three implosions at bang time are compared. All shots show similar overall symmetry features, with relatively round images as viewed from the top (polar - azimuthal angles 0°–30°) and severely distorted images as viewed from the side (90°–78°). The better top-view symmetry is a natural consequence of the azimuthal drive symmetry in the PDD configuration [Fig. 1(a)]. N160601–002 and N161214–001 show a comparable shape, while the images from N161214–002 indicate slightly improved equatorial symmetry. Comparing N161214–001 and N161214–002 also indicates a larger core for the latter shot, presumably because of the faster shock propagation and burn in this case (compare Fig. 4), which means that the shell has not converged as far at the time of peak x-ray brightness (when the reflected shock interacts with the incoming shell). The improved symmetry and lower convergence are expected to contribute to

Table II

<table>
<thead>
<tr>
<th>Shot</th>
<th>X-ray bang time (ns)</th>
<th>DT Tion (keV)</th>
<th>5–10 MeV TT-α yield ($\times10^{10}$)</th>
<th>DT-α yield ($\times10^{10}$)</th>
<th>MRS T³He-d yield ($\times10^{6}$)</th>
<th>D³He-p yield ($\times10^{6}$)</th>
<th>$E_{\text{DTHe-p}}$ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N160601–002</td>
<td>2.07 ± 0.03</td>
<td>7.8 ± 0.2</td>
<td>3.0 ± 0.6</td>
<td>21 ± 1</td>
<td>0.49 ± 0.01</td>
<td>2.7 ± 0.7</td>
<td>14.6 ± 0.9</td>
</tr>
<tr>
<td>N161214–001</td>
<td>1.69 ± 0.03</td>
<td>8.3 ± 0.2</td>
<td>3.7 ± 0.3</td>
<td>3.4 ± 0.1</td>
<td>0.92 ± 0.02</td>
<td>2.3 ± 0.7</td>
<td>14.5 ± 1.6</td>
</tr>
<tr>
<td>N161214–002</td>
<td>1.40 ± 0.04</td>
<td>12.5 ± 0.2</td>
<td>8.5 ± 0.7</td>
<td>7.2 ± 0.3</td>
<td>4.60 ± 0.03</td>
<td>2.8 ± 0.3</td>
<td>14.9 ± 0.5</td>
</tr>
</tbody>
</table>

90°–78° and 90°–315°, respectively); the T³He-d spectra are measured using MRS at polar-azimuthal angles of 73°–324°. The nominal D₃He-p and T³He-d birth energies are indicated by dashed vertical lines in Fig. 5. The spectra from low-power shots N160601–002 and N161214–001 are very clearly downshifted in energy compared to nominal and also show substantial deviation from the nominal Gaussian shape in the form of a low-energy tail (most likely due to ρR variation in time in this direction). Spectra from higher-power shot N161214–002 are much more symmetric in shape. Note that these spectra are slightly upshifted in energy relative to nominal; this is expected when the bang time happens right at the tail end of the laser pulse (compare Fig. 4). It is expected that truncating the higher-power laser pulse early, at 1.0 ns, would eliminate this problem without detrimental impact on yield (compare Fig. 3, which indicates that the pulse duration at this power setting could be reduced to 1.0 ns without losing yield).

In Fig. 6, mean D₃He-p energies and yields are shown versus position for all three shots (average values are summarized in Table II). Note that the deuterium impurity in the fuel is noticeably lower for shots N161214–001/002 than for shot N160601–002, leading to substantially lower D₃He-p yield for N161214–001 than for N160601–002. The uncertainty in the WRF analysis is larger for N161214–002 than for N160601–002 in spite of comparable yields; this is because of the higher T₃He-deuteron yield on N161214–002, which limits how long the CR-39 detectors used in the WRF spectrometers37 can be etched without overlap issues, (N161214–002 data were etched for 1.5 h, N160601–002 data were etched for 3 h.) In principle, widths can be inferred from the measured spectra as well. Width numbers are not shown in Fig. 6 since the spectral width is not very meaningful for N160601–002 and N161214–001 due to large spectral distortions, and very uncertain for N161214–002 due to the short etch time.

From Fig. 6, we conclude that energies are more symmetric for the higher laser power implosion. The indication is that yields are more symmetric as well, but the large error bars on the N161214–002 data prevent any firm conclusions on this point. (Again, in order to avoid upshifts, we would need to truncate the laser pulse used on N161214–002. Bang after the end of the laser pulse is also expected to reduce yield variations around the implosion.26) In Fig. 7, x-ray images of the three implosions at bang time are compared. All shots show similar overall symmetry features, with relatively round images as viewed from the top (polar - azimuthal angles 0°–30°) and severely distorted images as viewed from the side (90°–78°). The better top-view symmetry is a natural consequence of the azimuthal drive symmetry in the PDD configuration [Fig. 1(a)]. N160601–002 and N161214–001 show a comparable shape, while the images from N161214–002 indicate slightly improved equatorial symmetry. Comparing N161214–001 and N161214–002 also indicates a larger core for the latter shot, presumably because of the faster shock propagation and burn in this case (compare Fig. 4), which means that the shell has not converged as far at the time of peak x-ray brightness (when the reflected shock interacts with the incoming shell). The improved symmetry and lower convergence are expected to contribute to
the lesser distortion in equatorial spectra observed from shot N161214–002 (compare Fig. 5), because of less mass accumulation in the equatorial direction.

While the comparison of results from N161214–001 and N161214–002 clearly shows that increasing the power from 60 to 140 TW leads to an increase in yield (Table II), the increase is smaller than predicted from the 1 D-Ares simulations (Fig. 3). In addition to the TT-n yields shown in Fig. 3, predicted D^3He-p, T^3He-d, and DT-n are also generated from the free-fall analysis of the Ares simulations. In Fig. 8, the measured yield amplifications between shots N161214–001 and N161214–002 are contrasted to the Ares-predicted yield amplifications, assuming 61% absorption.

The first question in making this comparison is whether it is reasonable to assume the same absorption fraction at the two power settings. While extrapolation of measurements of scattered light on the NIF to total absorbed light fraction is challenging due to the PDD geometry as discussed above, a relative scaling between two shots is straightforward to perform. Comparing the fast diode scattered light measurements in four beams (#315–318) on shots N161214–001 and N161214–002 shows an average ratio of 1.70 times more scattered light for -002 (Table III), consistent with the 1.74 times more scatterings in four beams (#315–318) on shots N161214–001 and N161214–002, and measurements. Charged particle spectra from the higher power shot are less distorted and more uniform around the implosion compared to spectra from the lower power shot, likely at least partially because of improved implosion symmetry. To fully optimize for charged-particle measurements, the laser pulse for the higher power shot should be truncated to 1.0 ns to avoid energy upshifts due to capsule charging; simulations indicate that this could be done without loss of yield. We have also demonstrated that using square pulses to implode thin-shell SiO2 capsules gives higher yield at lower laser power compared to using a ramped pulse. While these results are very valuable for future diagnostic development and neutron source shots using this platform, what is really required for the nucleosynthesis platform is higher yield at lower Tion. This motivates using larger capsules for these experiments (Sec. III).

III. USING LARGER CAPSULES

The square pulse power scan described in Sec. II demonstrated that sufficient yield to accurately probe the ^3He+^3He reaction on the NIF could be achieved by imploding 1.6 mm-outer-diameter SiO2 capsules with a square laser pulse, and that yield and Tion increase with laser power. While this is a
valuable result for other reasons, this type of high-T_{ion} implosion does not achieve conditions ideal for the study of stellar-nucleosynthesis-relevant reactions. The fusion reaction yield is proportional to (i) reactant densities, (ii) reactivity, which is a strong function of T_{ion}, (iii) burn volume, and (iv) burn duration. Hence, an obvious way to increase yield without increasing T_{ion} or areal density (which would cause charged particles to experience energy loss) is to increase the burn volume. This can be achieved on the NIF by imploding larger capsules using more laser energy.38

A platform to implode 3-mm OD, $18-\mu$m-thick CH shell capsules using a 1.8-ns square pulse was recently developed with the initial goal of studying electron-ion equilibration.6,7 The initial experiments using this platform, described in detail in Refs. 6,7, used D$_2$-gas-filled capsules and varied the fraction of laser energy delivered in the inner and outer laser beam cones [Fig. 1(a)] to tune implosion symmetry. In Fig. 9, the DD-neutron yields from this initial set of three 3-mm OD CH shell implosions (shots N160920–003, N160920–005, and N160921–001) are contrasted to the DD-neutron yield obtained from three D$_2$-gas-filled 1.6-mm-OD SiO$_2$ shell implosions equivalent to shot N160601–002 described in Sec. II (specifically, shots N101215–001, N120328–001,5 and N130225–006). Interestingly, the comparison shows that the CH-shell implosions outperform the SiO$_2$-shell implosions by a higher fraction than expected from simple volume scaling. We note that the

![Fig. 7. X-ray images of the three 3He implosions as viewed from (a)–(c) the top, at polar-azimuthal angles 0°–0°, and (d)–(f) the side, at polar-azimuthal angles 90°–78°. (a) and (d) Images are from shot N160601–002, (b) and (e) from shot N161214–001, and (c) and (f) from shot N161214–002. Note that while the color scale is directly comparable for N161214–001 and -002, the N160601–002 color scale is significantly different, which means that the relative size for this implosion cannot be inferred by looking at the images.](image1)

![Fig. 8. Measured (red crosses) and simulated (black boxes) yield amplification when going from 60 to 140 TW delivered laser power (assuming 61% absorption for absorbed powers of 37 and 85 TW).](image2)

TABLE III. Fast diode-measured scattered light in quad 31 on the NIF for shots N161214-001 and -002.

<table>
<thead>
<tr>
<th>Beam</th>
<th>N161214-001 (J)</th>
<th>N161214-002 (J)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>B315</td>
<td>41.7</td>
<td>69.5</td>
<td>1.67</td>
</tr>
<tr>
<td>B316</td>
<td>25.6</td>
<td>46.9</td>
<td>1.83</td>
</tr>
<tr>
<td>B317</td>
<td>28.9</td>
<td>45.2</td>
<td>1.56</td>
</tr>
<tr>
<td>B318</td>
<td>55.4</td>
<td>96.6</td>
<td>1.74</td>
</tr>
</tbody>
</table>
measured T_{ion} are comparable or even a bit higher for the SiO$_2$ shells (8–11 keV) than for the CH shells (7.3–7.8 keV). The convergence ratios (CR) for the SiO$_2$ and CH shell implosions are also roughly equivalent, and the initial fill pressures comparable at 10 atm for the SiO$_2$ shell case and 8 atm for the CH shell case, indicating similar number densities for the two cases (if anything, based on the higher initial fill pressure for the SiO$_2$-shell capsule, we may expect higher relative yield in this case). We conjecture that the improved symmetry for the larger capsules may be responsible for the additional boost in yield on top of the expected volume gain (compare Fig. 12; note that the symmetry is different for the three CH-shell implosions in Fig. 9 due to the varying cone fraction, but better than for the SiO$_2$-shell implosions in all cases). Reduced impact of ion-kinetic effects in the larger capsule implosions due to larger system scale size (hence lower Knudsen number) may also contribute to the improved performance.

As an aside, it is also interesting to note that the energy used to drive the CH shell capsules from Fig. 9 is only 3.8 times higher than the energy used to drive the SiO$_2$ capsules, while the total mass of the CH capsules is ~5.5 times higher than the mass of the SiO$_2$ capsules. The fact that the laser energy increase is less than predicted by mass scaling can be viewed as further evidence that the ramped laser pulse shape used to drive the SiO$_2$ shell implosions (equivalent to the laser pulse shape used for N160601–002; Fig. 4) is not optimized for high performance.

Clearly, the 3 mm-OD CH shell platform is an interesting possible path towards reaching the low T_{ion}, high yield goals for the nucleosynthesis studies. However, the initial CH-shell experiments did not address whether low enough ρR for accurate probing of charged-particle spectra could be achieved. A 1 D-Ares laser energy scan (Fig. 10) was performed as a first step towards addressing this question. The simulations were tuned to match the experimental results from the best-performing D$_2$-gas-filled 3 mm-OD shell implosion, N160920–005. The laser energy was then increased in two ways from this baseline, (i) by extending the laser pulse duration at fixed power (dashed lines, hollow symbols in Fig. 10), and (ii) by increasing the power at fixed pulse duration (solid lines/symbols in Fig. 10). The simulations show predicted total ρR that are higher than the ideal $<10 \text{mg/cm}^2$ for charged-particle measurements. They also show that extending the laser pulse at fixed power is expected to lead to higher ρR, while increasing the power at fixed pulse duration should give minimally increased ρR.

To experimentally test the value of this platform for 3He3He measurements, two initial 3He-gas-filled implosions were performed, with parameters summarized in Table IV. These two implosions both used the same nominal pointing and cone fraction as reference implosion N160920–005. Different power settings were chosen for the two implosions as
Almost exactly matches the expectation from the pre-shot that the bang time change between the two shots (0.35 ns) burn histories are illustrated in Fig. 11. The first thing to note is due to laser issues on shot day, so only 184 beams were used. The third thing to note is that while these capsules as discussed, is advantageous for charged-particle measurements. The small residual deuterium impurity in the capsule fill is fortuitous as it allows us to address the usefulness of these implosions for charged-particle measurements. Eight WRF proton spectrometers were fielded on each of these implosions: four 50 cm from the target with a top view, and four 10 cm from the target with a side view. The top four WRFs were fielded at ±13° ±3.5° from the polar-azimuthal 0°-0° axis. The equatorial WRFs were fielded ±21° in the equatorial plane from the polar-azimuthal 90°-78° and 90°-315° axes (since these WRFs are so close to the implosion, they span a broad range of angles from 7° to 36° from the axes). With D3He-p yields of 5–6 × 10^8 for these implosions (Table V), excellent D3He-proton spectra were recorded on all eight detectors. The D3He-p yields and mean energies (E_{D3He-p}) as well as the 3He3He yields quoted in Table V are weighted averages of the eight measurements. The uncertainties quoted are the uncertainties in the weighted average, multiplied by \(\chi^2_{\text{red}} \) for the hypothesis that the weighted averages represent all measurements for the cases where \(\chi^2_{\text{red}} > 1 \).

D3He-proton yields, mean energies, and spectral widths as measured with the eight individual detectors on the two shots are summarized in Fig. 13. The spectral widths are quoted as an upper limit on D3He T_{ion}, inferred assuming the entire spectral broadening results from thermal Doppler broadening only (\(\sigma = 76.681 \times T_{ion} \) keV). Excellent uniformity is seen in the yields and mean energies from both shots [Figs. 13(a) and 13(b)]. The spectra for both shots are very clearly downshifted from the nominal 14.7 MeV birth energy with a mean energy of 14.19 MeV for shot N170212–003 and 14.32 MeV for shot N170212–004, providing evidence of remaining \(\rho R \) at burn for both implosions. Excellent width uniformity [Fig. 13(c)] is seen for shot N170212–004. An average upper limit D3He T_{ion} = 16.7±0.4 keV is inferred from all detectors for this shot. For shot N170212–003, the spectra as viewed from polar-azimuthal angles 90°–78° show substantially larger width (and more distortion) than spectra as viewed from other angles. The reason for this asymmetry is still under investigation, but one hypothesis is that it could be related to the eight dropped laser beams. These

<table>
<thead>
<tr>
<th>Shot</th>
<th>Pulse shape</th>
<th>Pulse length (ns)</th>
<th>Laser energy (kJ)</th>
<th>Capsule diameter ((\mu m))</th>
<th>Shell thickness ((\mu m))</th>
<th>(^3)He fill pressure (atm)</th>
<th>Initial density (mg/cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>N170212-003</td>
<td>Square</td>
<td>1.8</td>
<td>484</td>
<td>2950</td>
<td>17.6</td>
<td>10.2</td>
<td>1.28</td>
</tr>
<tr>
<td>N170212-004</td>
<td>Square</td>
<td>1.8</td>
<td>622</td>
<td>2956</td>
<td>18.0</td>
<td>10.2</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Table IV. Parameters of the two \(^3\)He-filled CH shell exploding pushers shot with varying laser power.
eight laser beams are bundled around azimuthal angles 259° (upper four beams) and 191° (lower four beams), for an average azimuthal angle impacted of 225°. This is close to opposite in azimuthal angle to the WRFs at 90°–78° (the upper four beams are directly opposite), meaning that the implosion would be driven relatively harder in the 90°–78° direction, leading to more ρR. We conjecture that the effect is less obvious for N170212–004 due to the lower convergence and earlier implosion in this case [compare Fig. 12(f)]. Excluding the distorted 90°–78° data, an average upper limit D3He Tion = 18.1±0.6 keV is inferred for shot N170212–003. Note that these upper limit Tions should not be viewed as approximations of the actual Tions for these implosions; there will certainly be other broadening effects that also contribute to the spectral width, including broadening due to fuel ρR at burn (see further discussion below).

Figure 14 shows the average D3He-p spectra from all WRFs except the two on 90°–78° for shot N170212–003, and from all eight WRFs for shot N170212–004. The average spectrum from N170212–003 shows a small but clearly evident low-energy tail and some skew relative to the nominally expected Gaussian shape. The average spectrum from N170212–004, on the other hand, is remarkably Gaussian over nearly three orders of magnitude in spite of the small downshift in energy relative to nominal. Excellent 3He3He-p spectra were also measured on these shots but are not shown, as they will be the topic of an upcoming publication. Given that the noise floor in the D3He-p measurement is about 3 orders of magnitude below the peak (Fig. 14), and the 3He3He-p spectrum ~10 times wider than the D3He-p spectrum, we roughly estimate that a 3He3He-p yield more than 1/100th of the D3He-p yield is required for a strong measurement of the 3He3He-p spectrum.

The observed spectral distortions are small enough that it is reasonable to think that we could accurately correct for them to report 3He3He birth spectra from these implosions. This is simplified by the fact that burn happens well after the end of the laser pulse (Fig. 11), which means no charged-particle energy upshifts due to capsule charging are expected. However, to properly correct the 3He3He spectra, we need to know the relative contribution of fuel and shell ρR. There is degeneracy between the broadening/downshift impact of fuel and shell ρR and Doppler broadening due to Tion in the D3He-p spectra. While fuel ρR gives rise to more broadening than shell ρR at an equivalent level, Tion also gives rise to broadening, and many possible combinations of the three parameters can be invoked to explain the spectra in Fig. 14; in essence, the three parameters, Tion, fuel, and shell ρR, cannot be uniquely constrained by the two observables, broadening and downshift. To fully constrain Tion and fuel and shell ρR for these implosions, further information is required. This information could be obtained from an identical implosion with a higher deuterium content; enough to measure Tion from the DD-neutron spectrum and fuel ρR from the ratio of secondary DT-n to primary DD-n yields.41 Note that it is extremely important for the 3He3He work to
know at what T_{io} (hence center-of-mass energy) we probe this reaction. (We know from Fig. 13 that T_{io} from shot N170212–003 is no higher than 18 keV and T_{io} from N170212–004 no higher than 17 keV. However, the true T_{io} from these implosions is expected to be significantly lower than that, we roughly estimate \$C24^{8.5 \text{ keV}} \text{ for -003 and } C24^{10.5 \text{ keV}} \text{ for -004 based on reactivity scaling}.42$

It is instructive to compare the measured D³He-p spectra with expectation based on simulations. Our two D²He-gas-filled CH-shell shots have been simulated using the 1D radiation hydrodynamics code NYM,43 calibrated to reference D₂-gas-filled implosion N160920–005.6 The top panels of Figs. 15 and 16 show NYM-simulated D³He burn histories and burn-averaged D³He T_{io} as a function of time for shots N170212–003 (Fig. 15) and N170212–004 (Fig. 16). The timing of the NYM simulations is aligned to reproduce the measured x-ray bang time. Synthetic D³He-p spectra have been generated using NYM-simulated radial profiles of T_{io}, electron temperature (T_e), and density (\(\rho \)) at a few discrete times (indicated with data points in the upper panels of Figs. 15 and 16). These spectra are generated using a Monte Carlo model to (i) seed D³He protons in spherical geometry, with properly weighted radial probabilities based on the T_{io}/\(\rho \) profiles, and (ii) transport them to an imagined detector using Li-Petrasso stopping,44 considering the \(\rho \) and T_e profiles. For reference, the fuel and shell \(\rho Rs\) inferred from the NYM profiles are also shown in the top panels of Figs. 15 and 16.

The synthetic spectra provide a quick reference for what the expected impact on the D³He-p spectra is of various combinations of T_{io} and fuel and shell \(\rho Rs\). The comparison to measured spectra leads to the conclusion that the dynamics of these implosions are important in the interpretation of results. The D³He burn histories from the 1D-NYM simulations are seen to be double-peaked. However, these are clean, 1D simulations. Given the observed asymmetries for these implosions (Fig. 12) and potential mix, the second peak is not expected to survive intact (in fact, if fall-line analysis was applied to this simulation, it would almost entirely eliminate this peak). Still, the timing of the second peak provides a better match to observed x-ray bang time for these implosions. This is believed to be because the x-ray peak is generated by the outgoing shock colliding with the incoming shell, which happens at about the time of peak compression, responsible for the second burn peak in the simulation. If this hypothesis holds, we expect to see a significant difference between nuclear and x-ray bang times for these implosions. (Given the predicted strong variation of T_{io} during burn [Fig. 15(a)], such a difference might be expected to be even larger for D³He than for D²He.)
DD or DT, due to the different T_{ion} dependence of the reactivities45 for these reactions.) The hypothesis that nuclear burn at late time is truncated relative to the 1 D prediction is supported by the fact that the D3He-p spectra are best matched by the simulated q_R at early times. It is also supported by preliminary measurements of the D3He bang time for these implosions using the MagPTOF diagnostic,46 which indicate D3He bang times of 2.6\pm0.1 ns for shot N170212–003 and 2.1\pm0.1 ns for shot N170212–004. The measured MagPTOF bang time for N170212–003 correlates nearly exactly with the first peak in the simulated burn history. Although for N170212–004 agreement of the measured MagPTOF with the synthetic burn history is less good, it still falls substantially ahead of the x-ray bang time. The difference in simulations and measurements in this case is not yet fully understood, but the early MagPTOF bang time suggests that nuclear yield is dominated by the initial shock and subsequent burn is even further truncated by deviations from 1 D behavior.

Kinetic effects such as tail ion depletion47,48 have emerged as an important topic to be considered in connection with exploding pusher implosions.5,9 As for the impact of tail ion depletion on our 3He3He work, the first thing to note is that this is not expected to impact the proton spectral measurements. Knudsen numbers for N170212–003 and -004 are crudely estimated to be 0.01 and 0.02, respectively, based on T_{ion} from reactivity scaling and burn region size from inspection of x-ray images. Using the fuel ion distribution as defined in terms of N_k by Albright\textit{ et al.}48 we estimate a reactivity reduction relative to Maxwellian of 4% for 3He3He and 5% for D3He at $N_k = 0.02$ and $T_{\text{ion}} = 10.5$ keV. As planned measurements of the reactivity of the 3He3He reaction will be made based on the ratio of 3He3He-p to D3He-p yields, an effect on this level would be negligible. However, the possible impact of kinetic effects on this work is a very important question, and we plan to follow up this initial analysis with more detailed simulations to thoroughly address this topic.

In summary, in this section it has been clearly demonstrated that larger capsules work for generating higher yield at equivalent T_{ion}. Improved symmetry with larger capsules when using polar-direct drive may contribute to higher yields. The 3 mm-OD capsules used in this work were driven with up to 0.62 MJ; this leaves room to drive even larger capsules using more of the available 1.8 MJ laser energy on the NIF to push these yields even further. From mass scaling, we expect that 1.1 MJ energy and 490 TW power would be required38 to drive a 4 mm-OD capsule to equivalent conditions as for shot N170212–003. This would give a further factor 2.4 increase in yield at equivalent T_{ion}.

In terms of nucleosynthesis experiments, high enough 3He3He yield (>10^7) at an interesting T_{ion} (bridging the gap between the OMEGA measurement at $T_{\text{ion}} = 27$ keV and the center of the sun at $T_{\text{ion}} = 1.3$ keV) can be obtained from...
these CH shell implosions. We have shown that emitted charged-particle spectra are (for the most part) uniform around the implosion, unaffected by upshifts due to capsule charging, and minimally distorted by remaining areal density at burn, but that improved understanding of the relative impact of fuel and shell ρR is required for accurate interpretation of the 3He3He data.

IV. CONCLUSIONS

Pulse shape optimization and capsule optimization have been pursued as avenues toward improving the NIF polar-direct-drive exploding pusher platform as a high-yield, low-areal-density fusion product source for nucleosynthesis experiments in a stellar-relevant environment.

From the pulse shape study, it is concluded that 1.6 mm-outer-diameter glass-shell capsules are more effectively driven with square than ramped laser pulses, with the same capsules generating higher yield and higher T_{ion} when driven with a square pulse of equivalent energy. Yield and T_{ion} from these capsules are also found to increase with increased laser power, albeit by less than predicted by $1D$ simulations, and ρR is found to decrease with increased laser power. At 140 TW power, symmetric, minimally distorted charged-particle spectra are obtained from these implosions, although when shot with 1.3 ns pulse duration, the spectra are upshifted in energy due to capsule charging. Based on simulations, we expect that such upshifts could be avoided without loss of yield by truncating the laser pulse to 1.0 ns.

While the findings on improved implosion performance with square laser pulses and scaling of yield with power are expected to be important for various other campaigns utilizing this platform, the high values of T_{ion} resulting from these implosions are not ideal for studying stellar nucleosynthesis-relevant reactions. The capsule size study conclusively demonstrates, by comparing results from 1.6 and 3 mm-outer-diameter capsules, that higher yields at maintained T_{ion} can be obtained using larger targets. Excellent symmetry of emitted charged-particle spectra is also demonstrated for 3 mm-outer-diameter CH shell implosions. The 3He3He-p data from N170212-003 and N170212-004 are of high enough quality to be published. The spectra are downshifted in energy due to remaining areal density at burn, but at a low enough level that we expect to be able to accurately correct for it. As a next step, equivalent 3He-gas-filled implosions will be executed, with a high enough deuterium content to accurately infer T_{ion} from the DD-neutron spectra and to measure secondary DT-neutron yield (the exact deuterium fraction required is still being determined). The secondary DT neutrons will be used to determine fuel ρR. With T_{ion} and fuel ρR thus constrained, shell ρR can be obtained from the 3He3He-proton spectra. 3He3He-p core images will also be recorded to determine implosion size, from which density will be inferred. With this new information, accurate interpretation of already measured 3He3He-p spectra will be possible. Equivalent implosions with the minimum deuterium content that can be accurately characterized (low enough to allow measurement of 3He3He-p spectra) will then be executed in an attempt to directly measure the 3He3He reaction from the ratio of 3He3He-p to 3He3He-p yields. Finally, we would also like to push the platform to even larger capsules (4-mm targets) to make additional 3He3He measurements at even lower T_{ion}.

ACKNOWLEDGMENTS

The authors would like to thank the NIF operations crew for executing these experiments, and Ernie Doeg, Robert Frankel, and Michelle Valadez for processing of the CR-39 data used in this work. This material was based upon work supported by the Department of Energy, National Nuclear Security Administration under Award Nos. DE-NA0001857, DE-NA0002949, DE-NA0002905, DE-FG02-88ER40387, and DE-NA0001808. Results from Nym simulations are (c) British Crown Owned Copyright 2018/AWE. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

39For SiO2 shell implosion N120328, CR~4.3 is inferred from the 17% contour of the x-ray image at bang time3, while for N170212-003, which is nominally identical to N160920-005, CR~4 is inferred from the 30% contour [see Fig.12(f)]. However, this should be viewed as indicative only; caveats in this comparison are that the cameras may have been filtered differently on the two shots and that SiO2 vs CH shells give rise to different x-ray signatures. In addition, 1D LILAC simulations for 2.1 ns ramped pulse implosions of 1.6 mm OD SiO2 capsules as well as 1D Ares simulations of 1.8 ns square pulse implosions of 3 mm OD CH shell capsules each predict maximum CR~11, based on minimum fuel-shell interface location.

40Q33 top and bottom were dropped. The as-shot inner/total cone fraction was 26% for both shots.

42The reactivity scaling uses the measured DD-n yield and Tion from shot N160920-005 and, assuming equivalent burn profiles/dynamics for N160920-005 and N170212-003/004 but correcting for the small differences in initial densities, determines what Tion from N170212-003/004 would have been based on measured 3He3He yield.

