MIT_logo

Massachusetts Institute of Technology
Plasma Science and Fusion Center
HIGH ENERGY DENSITY PHYSICS DIVISION

PSFC_logo
CoE Home Page Research Publications Theses Contact Information Accessibility
MIT
UM
Nevada
UR
VTech
NNSA

Research Publications (2019 to 2022-03-16)

  • D. J. Bernstein et al., "Method to Determine the Electron-Ion Temperature Relaxation Rate from Test Particle Distributions", submitted to Phys. Plasmas.
  • G. P. A. Berg et al., "Design of the ion-optics for the MRSt neutron spectrometer at the National Ignition Facility (NIF)", Rev. Sci. Instrum. 93, 033505 (2022).
  • J. Meinecke et al., "Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas", Sci. Adv. 8, eabj6799 (2022).
  • A. L. Kritcher et al., "Design of inertial fusion implosions reaching the burning plasma regime", Nat. Phys. (2022). https://doi.org/10.1038/s41567-021-01485-9.
  • A. B. Zylstra et al., "Burning plasma achieved in inertial fusion", Nature 601, 27 January 2022.
  • W. Theobald et al. "Enhanced laser-energy coupling with small-spot distributed phase plates (SG5-650) in OMEGA DT cryogenic target implosions", Phys. Plasmas 29, 012705 (2022).
  • J. M. Levesque et al., "Experimental observations of detached bow shock formation in the interaction of a laser-produced plasma with a magnetized obstacle", Phys. Plasmas 29, 012106 (2022).
  • D. J. Schlossberg et al., "Observation of Hydrodynamic Flows in Imploding Fusion Plasmas on the National Ignition Facility", Phys. Rev. Lett. 127, 125001 (2021).
  • B. Lahmann et al., "Extension of charged-particle spectrometer capabilities for diagnosing implosions on OMEGA, Z, and the NIF", Rev. Sci. Instrum. 92, 083506 (2021).
  • R. H. H. Scott et al., "Shock Ignition Laser-Plasma Interactions in Ignition-Scale Plasmas", Phys. Rev. Lett. 127, 065001 (2021).
  • A. R. Christopherson et al., "Direct Measurements of DT Fuel Preheat from Hot Electrons in Direct-Drive Inertial Confinement Fusion", Phys. Rev. Lett. 127, 055001 (2021).
  • N. V. Kabadi et al., "Thermal decoupling of deuterium and tritium during the inertial confinement fusion shock-convergence phase", Phys. Rev. E 104, L013201 (2021).
  • G. Sutcliffe et al., "A new tri-particle backlighter for high-energy-density plasmas", Rev. Sci. Instrum. 92, 063524 (2021).
  • D. J. Bernstein and S. D. Baalrud, "Effects of Coulomb Coupling On Friction In Strongly Magnetized Plasmas", Phys. Plasmas 28, 6, 062101 (2021).
  • J. Pearcy et al., "Characterizing x-ray transmission through filters used in high energy density physics diagnostics", Rev. Sci. Instrum. 92, 063502 (2021).
  • T. M. Johnson et al., "Yield degradation due to laser drive asymmetry in D3He backlit proton radiography experiments at OMEGA", Rev. Sci. Instrum. 92, 043551 (2021).
  • P. J. Adrian et al., "An x-ray penumbral imager for measurements of electron-temperature profiles in inertial confinement fusion implosions at OMEGA", Rev. Sci. Instrum. 92, 043548 (2021).
  • D. T. Casey et al., "Three dimensional low-mode areal-density non-uniformities in indirect-drive implosions at the National Ignition Facility", Phys. Plasmas 28, 042708 (2021).
  • O. M. Mannion et al., "Mitigation of mode-one asymmetry in laserdirect-drive inertial confinement fusion implosions", Phys. Plasmas 28, 042701 (2021).
  • E. P. Hartouni et al., "Interpolating individual line-of-sight neutron spectrometer measurements onto the "sky" at the National Ignition Facility(NIF)", Rev. Sci. Instrum. 92, 043512 (2021).
  • M. Hohenberger et al. "Developing 'Inverted-Corona' Fusion Targets as High-Fluence Neutron Sources", Rev. Sci. Instrum 92, 033544 (2021).
  • O. M. Mannion et al., “Reconstructing 3D asymmetries in laser-direct-drive implosions on OMEGA”, Rev. Sci. Instrum. 92, 033529 (2021).
  • A. F. A. Bott et al., "Time-resolved turbulent dynamo in a laser plasma", Proc. Natl. Acad. Sci. U.S.A. Vol. 118 No. 11 e2015729118 (2021).
  • T. M. Johnson et al., “Yield degradation due to laser drive asymmetry in D3He backlit proton radiography experiments at OMEGARev. Sci. Instrum. 92, 043551 (2021).
  • J. H. Kunimune et al., "Top-level physics requirements and simulated performance of the MRSt on the National Ignition Facility", Rev. Sci. Instrum. 92, 033514 (2021).
  • N. Kabadi et al., "A multi-channel x-ray temporal diagnostic for measurement of time-resolved electron temperature in cryogenic deuterium-tritium implosions at OMEGA", Rev. Sci. Instrum. 92, 023507 (2021).
  • M. Gatu Johnson et al., "Using millimeter-sized carbon-deuterium foils for high-precision deuterium-tritium neutron spectrum measurements in directdrive inertial confinement fusion at the OMEGA laser facility", Rev. Sci. Instrum. 92, 023503 (2021).
  • H. D.Whitley et al., "Comparison of ablators for the polar direct drive exploding pusher platform", High Energy Density Physics 38 100928 (2021).
  • N. V. Kabadi et al., "A second order yield-temperature relation for accurate inference of burn-averaged quantities in multi-species plasmas", Phys. Plasmas 28, 022701 (2021).
  • Y. Kim et al., "First observation of increased DT yield over prediction due to addition of hydrogen", Phys. Plasmas 28, 012707 (2021).
  • R. A. Simpson et al., "Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multipicosecond regime", Phys. Plasmas 28, 013108 (2021).
  • N. V. Kabadi et al, “A second order yield-temperature relation for accurate inference of burn average quatities in multi-species plasmasPhys. Plasmas 28, 022701 (2021).
  • R. Przybocki et al., "Response of CR-39 nuclear track detectors to protons with non-normal incidence", Rev. Sci. Instrum. 92, 013504 (2021).
  • J.J. Ruby et al., "Constraining physical models at gigabar pressures", Phys. Rev. E 102, 053210 (2020).
  • J.J. Ruby et al., "Energy Flow in Thin Shell Implosions and Explosions", Phys. Rev. Lett. 125, 215001 (2020).
  • K. S. Anderson et al., "Effect of cross-beam energy transfer ontarget-offset asymmetry in direct-driveinertial confinement fusion implosions", Phys. Plasmas 27 112713(2020).
  • C. A. Thomas et al., "Principal factors in performance of indirectdrive laser fusion experiments", Phys. Plasmas 27 112712(2020).
  • C. A. Thomas et al., "Experiments to explore the influence of pulse shaping at the National Ignition Facility", Phys. Plasmas 27 112708(2020).
  • C. A. Thomas et al., "Deficiencies in compression and yield in xray-driven implosions", Phys. Plasmas 27 112705(2020).
  • Y. Ping et al., "Symmetry tuning and high energy coupling for an Al capsule in a Au rugby hohlraum on NIF", Phys. Plasmas 27 100702(2020).
  • A.B. Zylstra et al., "Saturn-ring proton backlighters for the National Ignition Facility", Rev. Sci. Instrum. 91, 093505 (2020).
  • K. L. Baker et al., "Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility", Phys. Rev. E 102, 023210 (2020).
  • B. Lahmann et al., "A Neutron Recoil-Spectrometer for Measuring Yield and Determining Liner Areal Densities at the Z Facility", Rev. Sci. Instrum. 91, 073501 (2020).
  • F. Fiuza et al., “Electron acceleration in laboratory-produced turbulent collisionless shocks”, Nat. Phys. 16, 916-920(2020).
  • Y. Arikawa et al., "The conceptual design of 1-ps time resolution neutron detector for fusion reaction history measurement at OMEGA and the National Ignition Facility", Rev. Sci. Instrum. 91, 053306 (2020).
  • M. Gatu Johnson et al., "3D xRAGE simulation of inertial confinement fusion implosion with imposed mode 2 laser drive asymmetry", High Energy Density Physics 36 (2020) 100825.
  • B. Lahmann et al., "CR-39 nuclear track detector response to inertial confinement fusion relevant ions", Rev. Sci. Instrum. 91, 053502 (2020).
  • A.B. Zylstra et al., "2H(ρ,γ)3He cross section measurement using high-energy-density plasmas" Phys. Rev. C 101, 042802(R) (2020).
  • L. E. Chen et al., “Transport of High-energy Charged particles through Spatially Intermittent Turbulent Magnetic Fields”, Astrophys. J. 892, 114 (2020).
  • M. Gatu Johnson et al., "Impact of stalk on directly driven inertial confinement fusion implosions", Phys. Plasmas 27, 032704 (2020).
  • Y. Lu et al., "Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets", Phys. Plasmas 27, 012303 (2020).
  • J. A. Frenje, "Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas," Plasma Phys. Control. Fusion. 62 (2020) 023001.
  • A.B. Zylstra et al., "Modified parameterization of the Li-Petrasso charged-particle stopping power theory", Phys. Plasmas 26, 122703 (2019).
  • A.B. Zylstra et al., "Platform development for dE/dx measurements on short-pulse laser facilities", High Energy Density Physics 35, 100731 (2020).
  • D. J. Bernstein et al., “Friction force in strongly magnetized plasmasPhys. Rev. E 102, 041201(R) (2020)
  • D.B. Sayre et al., "Neutron Time-of-Flight Measurements of Charged-Particle Energy Loss in Inertial Confinement Fusion Plasmas", Phys. Rev. Lett. 123, 165001 (2019).
  • C.E. Parker et al., "Response of a lead-free borosilicate-glass microchannel plate to 14-MeV neutrons and γ-rays", Rev. Sci. Instrum. 90, 103306 (2019).
  • C. K. Li et al., “Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic Fields”, Phys. Rev. Lett. 123, 055002 (2019).
  • H. Sio et al., “Probing ion species separation and ion thermal decoupling in shock-driven implosions using multiple nuclear reaction histories”, Phys. Plasmas 26, 072703 (2019).
  • J. L. Kline et al., "Progress of Indirect Drive Inertial Confinement Fusion in the US", Nuclear Fusion 59, 112018 (2019).
  • D. Schaeffer et al., "Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas", Phys. Rev. Lett. 122, 245001 (2019).
  • T.R. Joshi et al., "Progress on observations of interspecies ion separation in inertial-confinement-fusion implosions via imaging x-ray spectroscopy", Phys. Plasmas 26, 062702 (2019).
  • P. Mabey et al., "Laboratory study of stationary accretion shock relevant to astrophysical systems", Sci. Rep. 9:8157 (2019).
  • P.-E. Masson-Laborde et al., "Interpretation of proton radiography experiments of hohlraums with three-dimensional simulations", Phys. Rev. E 99, 053207 (2019).
  • A. S. Liao et al., "Design of a new turbulent dynamo experiment on the OMEGA-EP", Phys. Plasmas 26, 032306 (2019).
  • L. Gao et al.,, “Mega-Gauss Plasma Jet Creation using a Ring of Laser Beams“, ASTROPHYS J LETT. 873, 2 (2019).
  • H. Sio et al, “Probing ion species separation and ion thermal decoupling in shock-driven implosions using multiple nuclear reaction historiesPhys. Plasmas 26 0727031 (2019).
  • C. K. Li et al “Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic FieldsPhys. Rev. Lett. 123, 055002 (2019).
  • Y. Lu et al., "Numerical simulation of magnetized jet creation using a hollow ring of laser beams", Phys. Plasmas 26, 022902 (2019).
  • V. Gopalaswamy et al., “Tripled yield in direct-drive laser fusion through statistical modelling", Nature 565, 31 January 2019.
  • H. Sio et al., "Observations of Multiple Nuclear Reaction Histories and Fuel-Ion Species Dynamics in Shock-Driven Inertial Confinement Fusion Implosions", Phys. Rev. Lett. 122, 035001 (2019).
  • D.P. Higginson et al., "Kinetic effects on neutron generation in moderately collisional interpenetrating plasma flows", Phys. Plasmas 26, 012113 (2019).
  • M. Gatu Johnson et al., "Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions", Phys. Plasmas 26, 012706 (2019).