A novel divertor cryopumping system has been successfully demonstrated in Alcator C-Mod with a steady-state neutral pressure of 500 mTorr in a fully toroidal loop. The system is designed to minimize LHe usage (2-3 liters/shot) and achieve a pumping throughput of 12,000 liters/s H$_2$. The cryopump installation is performed with minimal interruption of line-of-sight access through C-Mod's vertical ports.

Cryopump Project Goals
- Full-scale cryopumping tests
- Remote PLC control interface
- Full toroidal loop in upper divertor, maximizing pumping speed
- Full toroidal loop in upper divertor, maximizing pumping speed

Cryopump Installation
- Embedded Langmuir probes for particle flux optimization
- Full toroidal loop in upper divertor, maximizing pumping speed
- Full toroidal loop in upper divertor, maximizing pumping speed

Cryopump Impact
- Neutrals are pumped per 3d Monte Carlo Modeling provided design guidance
- Neutrals are pumped per 3d Monte Carlo Modeling provided design guidance
- Neutrals are pumped per 3d Monte Carlo Modeling provided design guidance
- Neutrals are pumped per 3d Monte Carlo Modeling provided design guidance

Performance Tests
- Excellent L-he density control at moderate densities
- Effective control of L-he density with a novel upper divertor cryopumping system
- Effective control of L-he density with a novel upper divertor cryopumping system
- Effective control of L-he density with a novel upper divertor cryopumping system

Summary
- The cryopumping system has been successfully demonstrated in Alcator C-Mod with a steady-state neutral pressure of 500 mTorr in a fully toroidal loop.
- The system is designed to minimize LHe usage (2-3 liters/shot) and achieve a pumping throughput of 12,000 liters/s H$_2$.
- The cryopump installation is performed with minimal interruption of line-of-sight access through C-Mod's vertical ports.

Supported by USDoE Coop Agreement DE-FC02-98ER54512