Relationship between Edge Gradients and Plasma Flows in Alcator C-Mod

B. LaBombard
N. Smick, A. Graf, K. Marr, R. McDermott, M. Reinke, M. Greenwald, J.W. Hughes, B. Lipschultz, J.L. Terry, D.G. Whyte

Contributed Oral JO3.00007
Presented at the 50th APS DPP Meeting, Dallas, Texas
November 18, 2008
Motivation and Challenge: Develop first-principles understanding of transport physics in Edge Plasma region

Background: We are investigating a new view of edge transport behavior...

- Edge Plasma ~ a system at critical gradient near LCFS
- Critical Gradient ~ set by Electromagnetic Turbulence

LCFS pressure gradients scale with $\sim I_p^2$

Poloidal beta gradients (α_{MHD}) are invariant at same normalized collisionality

This behavior makes contact with EM fluid turbulence simulations†.

Motivation and Challenge: Develop first-principles understanding of transport physics in Edge Plasma region

Background: We are investigating a new view of edge transport behavior...

- Edge Plasma ~ a system at critical gradient near LCFS
- Critical Gradient ~ set by Electromagnetic Turbulence

\[\alpha_{MHD} \sim \frac{\nabla n T_e}{I_p^2} \]

LCFS pressure gradients scale with \(\sim I_p^2 \)

Poloidal beta gradients \((\alpha_{MHD})\) are invariant at same normalized collisionality

This behavior makes contact with EM fluid turbulence simulations†.

Question: Does magnetic shear and/or ExB flow shear also play role? => Focus of this talk

Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

 Double-Null - ‘high shear’
 - X-points define LCFS
 - Elongation ~ 1.65
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1:
Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1:
Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1:
Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1:
Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited.

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65

Inner-Wall-Limited - ‘reduced shear’
- X-point flux surface is ~3 λ_p beyond LCFS
- Elongation ~ 1.35
Experiment 1:
Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

 Double-Null - ‘high shear’
 - X-points define LCFS
 - Elongation ~ 1.65

 Inner-Wall-Limited - ‘reduced shear’
 - X-point flux surface is ~3 \(\lambda_p \) beyond LCFS
 - Elongation ~ 1.35

- Track systematic changes (if any) of the SOL profiles and ‘critical gradients’ (\(\alpha_{MHD} \)) near LCFS
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

 Double-Null - ‘high shear’
 - X-points define LCFS
 - Elongation ~ 1.65

 Inner-Wall-Limited - ‘reduced shear’
 - X-point flux surface is ~3 λ_p beyond LCFS
 - Elongation ~ 1.35

- Track systematic changes (if any) of the SOL profiles and ‘critical gradients’ (α_{MHD}) near LCFS

 - Scanning Langmuir-Mach probes
 See N. Smick, PP6.00085, Wednesday 2:00 pm
Experiment 1: Does magnetic shear near LCFS influence ‘critical gradient’?

- Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null - ‘high shear’
- X-points define LCFS
- Elongation ~ 1.65

Inner-Wall-Limited - ‘reduced shear’
- X-point flux surface is ~3 λ_p beyond LCFS
- Elongation ~ 1.35

- Track systematic changes (if any) of the SOL profiles and ‘critical gradients’ (α_{MHD}) near LCFS

Are steep pressure gradients near the LCFS affected by separatrix location?
Result: SOL profiles are robustly insensitive to location of separatrix flux surface

- **Diverted profiles are reference**
Result: SOL profiles are robustly insensitive to location of separatrix flux surface

- **Diverted profiles** are reference
- **Separatrix sweep has no effect on steep gradients in Near SOL**
Result: SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
- Separatrix sweep has no effect on steep gradients in Near SOL
Result: SOL profiles are robustly insensitive to location of separatrix flux surface

- **Diverted profiles** are reference
- **Separatrix sweep** has no effect on steep gradients in Near SOL
Result: SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
- Separatrix sweep has no effect on steep gradients in Near SOL
Result: SOL profiles are robustly insensitive to location of separatrix flux surface.

- Diverted profiles are reference.
- Separatrix sweep has no effect on steep gradients in Near SOL.
- Steep gradients do not appear in Far SOL when separatrix is positioned there.
Result: ‘critical gradient’ (α_{MHD}) near LCFS remains the same in Inner Limited versus Double-Null Diverted discharges.
Result: ‘critical gradient’ (α_{MHD}) near LCFS remains the same in Inner Limited versus Double-Null Diverted discharges.

$$\alpha_{MHD} \sim \nabla nT_e \frac{I^2}{I_p^2}$$

Location: 1 mm outside LCFS

$$\frac{1}{q} \left(\frac{\lambda_{ci}}{R} \right)^{1/2}$$
Result: ‘critical gradient’ \((\alpha_{MHD}) \) near LCFS remains the same in Inner Limited versus Double-Null Diverted discharges

\[
\alpha_{MHD} \sim \frac{\nabla nT_e}{I_p^2}
\]

Location: 1 mm outside LCFS

- Independent of separatix location, \(\alpha_{MHD} \) near LCFS has same values and trend with inverse collisionality
Result: ‘critical gradient’ \((\alpha_{MHD})\) near LCFS remains the same in Inner Limited versus Double-Null Diverted discharges

\[\alpha_{MHD} \approx \nabla nT_e / I_p^2 \]

\[\frac{1}{q} \left(\frac{\lambda_{ci}}{R} \right)^{1/2} \]

- Independent of separatix location, \(\alpha_{MHD}\) near LCFS has same values and trend with inverse collisionality
- \(\alpha_{MHD}\) values are slightly lower than those from Lower Single-Null discharges \((Bx\nabla B\text{ toward } x\text{-pt})\)
Result: ‘critical gradient’ (α_{MHD}) near LCFS remains the same in Inner Limited versus Double-Null Diverted discharges

- Independent of separatix location, α_{MHD} near LCFS has same values and trend with inverse collisionality

- α_{MHD} values are slightly lower than those from Lower Single-Null discharges ($B_x \nabla B$ toward x-pt)

- α_{MHD} values are ~similar to those from Lower Single-Null ($B_x \nabla B$ away)
Result: ‘critical gradient’ (α_{MHD}) near LCFS remains the same in Inner Limited versus Double-Null Diverted discharges

- Independent of separatix location, α_{MHD} near LCFS has same values and trend with inverse collisionality

- α_{MHD} values are slightly lower than those from Lower Single-Null discharges ($B_x\nabla B$ toward x-pt)

- α_{MHD} values are \simsimilar to those from Lower Single-Null ($B_x\nabla B$ away)

Answer: Magnetic Shear (i.e., separatix location, elongation) does not set the value of ‘critical gradient’ observed near LCFS
A strong Velocity Shear Layer persists near the LCFS, independent of magnetic separatrix location.

- Diverted profiles exhibit strong shear layer near separatrix.

See I. Hutchinson, PP6.00084, Wednesday 2:00 pm
A strong Velocity Shear Layer persists near the LCFS, independent of magnetic separatrix location.

- Diverted profiles exhibit strong shear layer near separatrix.
- Location and magnitude of shear layer is unaffected by separatrix location.
A strong Velocity Shear Layer persists near the LCFS, independent of magnetic separatrix location.

- Diverted profiles exhibit strong shear layer near separatrix.
- Location and magnitude of shear layer is unaffected by separatrix location.
A strong Velocity Shear Layer persists near the LCFS, independent of magnetic separatrix location.

- **Diverted profiles** exhibit strong shear layer near separatrix.
- **Location and magnitude of shear layer** is unaffected by separatrix location.
A strong Velocity Shear Layer persists near the LCFS, independent of magnetic separatrix location.

- **Diverted profiles** exhibit strong shear layer near separatrix.
- Location and magnitude of shear layer is unaffected by separatrix location.
A strong Velocity Shear Layer persists near the LCFS, independent of magnetic separatrix location.

- **Diverted profiles** exhibit strong shear layer near separatrix.
- Location and magnitude of shear layer is unaffected by separatrix location.
Perpendicular Velocity Shear near LCFS is comparable to Ballooning Growth Rate

=> possible explanation for topology insensitivity

- Perhaps ExB flow shear dominates over magnetic shear in setting steep gradients in Near SOL
Perpendicular Velocity Shear near LCFS is comparable to Ballooning Growth Rate

=> possible explanation for topology insensitivity

- Perhaps ExB flow shear dominates over magnetic shear in setting steep gradients in Near SOL

- On open field lines, plasma potential is tightly coupled to electron temperature profile
Perpendicular Velocity Shear near LCFS is comparable to Ballooning Growth Rate

=> possible explanation for topology insensitivity

- Perhaps ExB flow shear dominates over magnetic shear in setting steep gradients in Near SOL

- On open field lines, plasma potential is tightly coupled to electron temperature profile

- Resultant shear layer and steep gradients at the LCFS would then be insensitive to limiter versus separatrix topology
Experiment 2:
Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology†

Experiment 2: Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

- Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology:
 - ‘Favorable’ $B_x \nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
 - Correlated with toroidal rotation...
 ...Co-current rotation ---> higher α_{MHD}
Experiment 2: Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

- Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology†
 - ‘Favorable’ $B_x \nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
 - Correlated with toroidal rotation...
 ...Co-current rotation ---> higher α_{MHD}

\Rightarrow Connection to flow shear implied

Experiment 2: Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

- Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology:
 - ‘Favorable’ $B_x \nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
 - Correlated with toroidal rotation...
 ...Co-current rotation ---> higher α_{MHD}

 \Rightarrow Connection to flow shear implied

- Experiment 2:
 - Perform magnetic X-pt topology scans at “Mid” and “Low” collisionality in ohmic L-mode plasmas

Experiment 2:
Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

- Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology†
 - ‘Favorable’ $B_x \nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
 - Correlated with toroidal rotation...
 ...Co-current rotation --> higher α_{MHD}

 \Rightarrow Connection to flow shear implied

- Experiment 2:
 - Perform magnetic X-pt topology scans at “Mid” and “Low” collisionality in ohmic L-mode plasmas

Experiment 2: Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

- Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology†
 - ‘Favorable’ $Bx\nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
 - Correlated with toroidal rotation...
 ...Co-current rotation ---> higher α_{MHD}

 \Rightarrow Connection to flow shear implied

- Experiment 2:
 - Perform magnetic X-pt topology scans at “Mid” and “Low” collisionality in ohmic L-mode plasmas

Experiment 2: Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

- Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology:
 - ‘Favorable’ $B_x \nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
 - Correlated with toroidal rotation...
 ...Co-current rotation ---> higher α_{MHD}

 \implies Connection to flow shear implied

- Experiment 2:
 - Perform magnetic X-pt topology scans at “Mid” and “Low” collisionality in ohmic L-mode plasmas

Experiment 2:
Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology†
- ‘Favorable’ $B_x \nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
- Correlated with toroidal rotation...
...Co-current rotation --> higher α_{MHD}

\Rightarrow Connection to flow shear implied

- Perform magnetic X-pt topology scans at “Mid” and “Low” collisionality in ohmic L-mode plasmas

- Record SOL profiles and plasma flows parallel ($V_{||}$) and perpendicular (V_{\perp}) to B with new ‘Gundestrup’-type scanning Langmuir probes

Experiment 2:
Does flow shear explain sensitivity of critical gradient (α_{MHD}) to upper/lower X-point topology?

- Previous experiments revealed sensitivity of α_{MHD} to Upper/Lower X-pt topology†
 - ‘Favorable’ $B_x\nabla B$ produces higher α_{MHD} near LCFS at mid to high collisionality
 - Correlated with toroidal rotation...
 ...Co-current rotation \rightarrow higher α_{MHD}

 \Rightarrow Connection to flow shear implied

- Experiment 2:
 - Perform magnetic X-pt topology scans at “Mid” and “Low” collisionality in ohmic L-mode plasmas
 - Record SOL profiles and plasma flows parallel ($V_{//}$) and perpendicular (V_{\perp}) to B with new ‘Gundestrup’-type scanning Langmuir probes

 \Rightarrow What is relationship between gradients and $V_{//}$, V_{\perp} flows/flow shear?

Result:

V_\perp shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ (α_{MHD})

Alcator C-Mod

Mid Collisionality

Plasma Potential

Parallel Flow

V_\perp Flow

V_\perp Phase

Low Collisionality

Parallel Flow

V_\perp Flow

V_\perp Phase
Result:

\(V_{\perp} \) shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ \((\alpha_{MHD}) \).

Mid Collisionality

- Reduced near LCFS, Flatter profile

Low Collisionality

- ~ No Change

Plasma Potential

Parallel Flow

\(V_{\perp} \) Flow

\(V_{\perp} \) Phase

Distance into SOL (mm)
Result:

V_\perp shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ (α_{MHD})
Result:

\(V_\perp \) shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ \((\alpha_{MHD})\).

Mid Collisionality

- Reduced near LCFS, Flatter profile
- Reduced Co-Current Flow
- Flatter profile near LCFS
- Flatter profile near LCFS

Low Collisionality

- ~ No Change
- ~ No Change
- ~ Similar gradients at LCFS
- ~ Similar gradients at LCFS
Result:

V_\perp shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ (α_{MHD}).
Result:

\(V_\perp \) shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ \((\alpha_{MHD}) \)

Mid Collisionality

- Reduced Near LCFS

Low Collisionality

- ~ No Change

Pressure Gradient Scale Length, \(L_p \)

Minimum is \(\sim 2 \) mm into SOL

Ballooning Growth Rate

\(\sim \frac{2C_s}{(R \ L_p)^{1/2}} \)

\(V_\perp \) Flow Shear

\(V_\perp \) Phase Shear
Result:

V_\perp shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ (α_{MHD})

Mid Collisionality

- Reduced Near LCFS
- Pressure Gradient Scale Length, L_p
 - Minimum is ~2 mm into SOL

Low Collisionality

- ~ No Change

Balloonning Growth Rate

- $\sim 2C_s/(R L_p)^{1/2}$
- ~2 MHz near LCFS

V_\perp Flow Shear

V_\perp Phase Shear
Result:

\(V_\perp \) shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ \((\alpha_{MHD})\)

Mid Collisionality

- Reduced Near LCFS
- Reduced Near LCFS
- Reduced Near LCFS
- Reduced Near LCFS

Low Collisionality

- ~ No Change
- ~ No Change
- ~ No Change
- ~ No Change

Pressure Gradient Scale Length, \(L_p \)

Minimum is ~2 mm into SOL

Ballooning Growth Rate

\(~2C_s/(R L_p)^{1/2}\)

~2 MHz near LCFS

\(V_\perp \) Flow Shear

Max Shear is ~2 mm into SOL, comparable to Ballooning Growth Rate

\(V_\perp \) Phase Shear
Result:

\(V_\perp \) shear is indeed sensitive to upper/lower X-point topology, consistent with changes in ‘critical gradients’ \((\alpha_{MHD})\)

Mid Collisionality

Reduced Near LCFS

Pressure Gradient Scale Length, \(L_p \)

- Minimum is \(~2\) mm into SOL

Ballooning Growth Rate

\(~2C_s/(R\ L_p)^{1/2}\)

\(~2\) MHz near LCFS

\(V_\perp \) Flow Shear

\(V_\perp \) Phase Shear

Max Shear is \(~2\) mm into SOL, comparable to Ballooning Growth Rate

Low Collisionality

\(~ No Change\)

\(~ No Change\)

\(~ No Change\)

\(~ No Change\)

\(V_\perp \) shear appears to be key controlling element!
Summary

- Edge Plasma behaves as a system at ‘critical gradient’ near LCFS

 ‘Critical gradient’ ~ set by EM turbulence (α_{MHD}), tied to collisionality

What is the role of Magnetic Shear and ExB Shear in setting these gradients?
Summary

• Edge Plasma behaves as a system at ‘critical gradient’ near LCFS
 ‘Critical gradient’ ~ set by EM turbulence (α_{MHD}), tied to collisionality

What is the role of Magnetic Shear and ExB Shear in setting these gradients?

• L-mode critical gradients (α_{MHD}) are found insensitive to magnetic shear
 SOL profiles are unchanged in Double-Null versus Inner-Wall-Limited discharges
 Persistent V_{\perp} shear layer observed near LCFS
 V_{\perp} shear ~comparable to ballooning growth rate near LCFS
 => may explain topology insensitivity
Summary

Edge Plasma behaves as a system at ‘critical gradient’ near LCFS

‘Critical gradient’ ~ set by EM turbulence (α_{MHD}), tied to collisionality

What is the role of Magnetic Shear and ExB Shear in setting these gradients?

L-mode critical gradients (α_{MHD}) are found insensitive to magnetic shear

SOL profiles are unchanged in Double-Null versus Inner-Wall-Limited discharges

Persistent V_\perp shear layer observed near LCFS

V_\perp shear ~comparable to ballooning growth rate near LCFS

=> may explain topology insensitivity

Upper versus Lower X-point topology is found to act as a ‘control knob’ on V_\perp shear layer and attained α_{MHD} at mid-to-high collisionality

$B_x \nabla B$ toward X-point:

Increased co-current toroidal rotation

More positive potential at LCFS

Increased V_\perp shear => higher values of α_{MHD}
Edge Plasma behaves as a system at ‘critical gradient’ near LCFS

‘Critical gradient’ ~ set by EM turbulence (α_{MHD}), tied to collisionality

What is the role of Magnetic Shear and ExB Shear in setting these gradients?

L-mode critical gradients (α_{MHD}) are found insensitive to magnetic shear

- SOL profiles are unchanged in Double-Null versus Inner-Wall-Limited discharges
- Persistent V_{\perp} shear layer observed near LCFS
- V_{\perp} shear ~ comparable to ballooning growth rate near LCFS
 => may explain topology insensitivity

Upper versus Lower X-point topology is found to act as a ‘control knob’ on V_{\perp} shear layer and attained α_{MHD} at mid-to-high collisionality

- $B_x \nabla B$ toward X-point:
 - Increased co-current toroidal rotation
 - More positive potential at LCFS
 - Increased V_{\perp} shear => higher values of α_{MHD}

=> Edge ‘critical gradient’ ~ set by ExB shear-regulated EM turbulence...