Assessment of X-Point Target Divertor Configuration for Power Handling and Detachment Front Control

M. Umansky1, M. Rensink1, T. Rognlien1, B. LaBombard2, D. Brunner2, J. Terry2, and D. G. Whyte2

1Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
2Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA

Corresponding Author: M. Umansky, umansky1@llnl.gov

The challenges that will be facing the divertor in a tokamak-based fusion reactor prompt the search for innovative divertor configurations that use nonstandard magnetic geometry and additional X-points. Standard tokamak edge plasma transport codes such as UEDGE and SOLPS can be invaluable tools for exploration and evaluation of alternate divertor configurations for potential performance enhancements; however the presence of secondary X-points in the divertor has, up to now, hindered such application. A recent upgrade to UEDGE allows including a secondary X-point in the divertor, and in the present study UEDGE is used to analyze the recently proposed X-point target divertor that combines a radially extended outer leg with a secondary X-point placed in the outer leg volume. It is found in the modeling that as the input power into SOL is reduced to a threshold value, the outer divertor leg transitions to a fully detached state with the detachment front localized near the secondary X-point. Reducing the power further results in the front shifting upstream but remaining stable. As the power is reduced, the detachment front eventually moves to the primary X-point, which is associated with an X-point MARFE. However, for the X-point target divertor a fully detached divertor regime is maintained over a factor of 5–10 variation in the input power while for an otherwise similar parameter variation performed with a standard vertical plate divertor a much smaller detachment operational window is found. These results suggest that a stable, fully detached divertor operation over a wide parameter range may be realized for a tokamak with radially extended outer divertor legs.