Density Limit and Cross-Field Edge Transport Scaling in Alcator C-Mod

B. LaBombard, M. Greenwald, R.L. Boivin, B. Carreras, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L. Terry, S.J. Zweben, Alcator C-Mod Team

Paper EX/D2-1
Presented at the 19th IAEA Fusion Energy Conference, October 14 - 19, 2002, Lyon, France
Motivation/Background

- Tokamak density limit is observed to follow Greenwald empirical scaling law, yet satisfactory physics-based understanding is lacking\(^1\)

 \[\text{=> Extrapolation to untested reactor-regimes is uncertain}\]

- Recent C-Mod experiments indicate that a number of edge plasma phenomena is tightly linked:

 - Two-zone scrape-off layer profiles
 - Non-diffusive, "bursty" edge transport
 - Main-chamber recycling
 - Onset of divertor detachment

 \[\text{Key element => cross-field particle transport and its strong increase with plasma collisionality}\]

- Observations further suggest that cross-field particle and heat transport physics plays a direct role in setting the tokamak density limit

 \[\text{=> Key physics behind empirical scaling law may lie in "scrape-off layer transport" mechanisms}\]

Outline of Talk

- Edge Plasma Profiles and Fluctuations
- Cross-Field Particle Transport and Scalings
- Cross-Field Heat Convection
- Behavior Near Discharge Density Limit

Diagnostics:
- Horizontal Scanning Probe
- Fast Photo-Diode Array
- Turbulence Imaging
Scrape-off Layer Density Profiles Exhibit a "Two-Exponential" Decay and Strong Sensitivity to Discharge Density

Near SOL: steep decay, $\lambda_n \sim 2$ to 8 mm

Far SOL: shallow decay, $\lambda_n \sim 8$ to >100 mm

- Density at limiter (n_L) increases nonlinearly with increasing \bar{n}_e, $n_L \sim (\bar{n}_e)^2$

 $=>$ Particle flux onto main-chamber wall (limiter) increases sharply with \bar{n}_e

† 'shoulders’ on SOL profiles are prevalent in the literature: ASDEX, ASDEX-U, JT-60U, TEXT-U, ...
Fluctuations Exhibit Different Character in Near and Far SOL Regions, Consistent with Rapid Transport in Far SOL

Near SOL (steep n profile):
-> moderate amplitude, "random" fluctuations

Far SOL (flatter n profile):
-> large amplitude, intermittent I_{sat} "bursts"
Fluctuation Probability Distributions Indicate Non-Diffusive Transport in \textit{Far SOL}†

\begin{itemize}
\item \textbf{Near SOL:} \sim \text{Gaussian}
\item \textbf{Far SOL:} Non-Gaussian
\end{itemize}

±Bursty, SOC-like behavior is universally seen in SOL plasmas, including non-tokamak devices.
2-D Turbulence Imaging: Intermittent, ~1 cm Scale "Blobs" of Emission Propagate Towards Limiter in Far SOL Zone

Observations suggest:
- Plasma intermittently "peels away" from steep-gradient Near SOL region and ~freely propagates to wall
=> Level of particle fluxes set by Near SOL physics

\[\text{\dag} \text{see J.L. Terry et al., paper EX/P5-10} \]
Outline of Talk

- Edge Plasma Profiles and Fluctuations
- Cross-Field Particle Transport and Scalings
- Cross-Field Heat Convection
- Behavior Near Discharge Density Limit
Magnitude of D_{eff} in Near SOL is Correlated with Collisionality in Near SOL

127 Ohmic L-Mode Datapoints:
- $0.8 < \bar{n}_e < 3.0 \times 10^{20} \text{ m}^{-3}$
- $0.5 < I_p < 1.0 \text{ MA}$
- $4 < B_T < 6 \text{ tesla}$
- $0.15 < \bar{n}_e/n_G < 0.53$

4 Parameter Regression:
- \Rightarrow Suggests (B_T/I_p), q, or L (// connection length) dependence

1 Parameter Regression:
- \Rightarrow Statistics point to (λ_{ei}/L) as a well-correlated parameter

Regression Analysis of D_{eff} ($= -\Gamma_\perp /\nabla n$), 2 mm into SOL

$\propto T_e^{-4.5} n^{1.1} I_p^{-2.0} B_T^{2.4}$

$\propto (\lambda_{ei}/L)^{-1.5}$

D_{eff} correlates with local collisionality:

$D_{\text{eff}} \sim (\lambda_{ei}/L)^{-1.5}$

- D_{eff} has no explicit B_T dependence†
- D_{eff} is clearly not D_{Bohm}!

† χ_{eff} independent of B_T was reported before for C-Mod and JET
For a fixed \bar{n}_e/n_G, the plasma chooses an "operating point" within a narrow range of λ_{ei}/L

\Rightarrow results in D_{eff} & V_{eff} correlating well with \bar{n}_e/n_G

\Rightarrow particle flux increases nonlinearly with \bar{n}_e/n_G
Primary SOL Power Loss Shifts from Parallel Conduction into Divertor to Cross-Field Convection onto Walls with Increasing \bar{n}_e/n_G

- Data indicates an ordered changeover in SOL plasma transport losses with increasing \bar{n}_e/n_G:
 1. Parallel conduction to divertor dominates
 2. Cross-field convection to walls ~ comparable to parallel conduction to divertor
 \[\rightarrow \text{Outer divertor detaches} \]
 3. Cross-field convection to walls dominates†

† Modeling shows Charge-Exchange losses to be small
Outline of Talk

- Edge Plasma Profiles and Fluctuations
- Cross-Field Particle Transport and Scalings
- Cross-Field Heat Convection

Diagnostics:

- Behavior Near Discharge Density Limit
As \bar{n}_e is Raised Near to Limit, Large Amplitude, Long Correlation-Time Fluctuations Move Inside Separatrix

Data from Deep Probe-Scan

SOL Profiles

Electron Temperature

Auto-Correlation Times (V_f data)

RMS $I_{sat}/<I_{sat}>

\bar{n}_e/n_G

- 0.7
- 0.4
- 0.3

Near density limit:

SOL n & T_e profiles very flat, T_{sep} low ~ 25 eV!

Fluctuations characteristic of "Far SOL" appear to cross the separatrix
Summary (page 1 of 2)

An ordered progression in SOL transport is observed with increasing \bar{n}_e/n_G, suggesting that the tokamak Density Limit involves "SOL transport physics":

<table>
<thead>
<tr>
<th>\bar{n}_e/n_G</th>
<th>parallel conduction dominates SOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>cross-field convection competes/dominates divertor detaches</td>
</tr>
<tr>
<td>High</td>
<td>"SOL transport" moves inside LCFS</td>
</tr>
<tr>
<td></td>
<td>operational density limit is reached</td>
</tr>
</tbody>
</table>

• At low and moderate \bar{n}_e/n_G, a two-zone SOL is observed:

Far SOL: flat profiles, non-gaussian PDFs, bursty, rapid transport to walls

=> main chamber recycling phenomenon

Near SOL: steep profiles, near-gaussian PDFs. Camera movies of "blobs" peeling away from Near SOL are recorded.

=> suggests transport level is set by Near SOL
Summary (page 2 of 2)

- Cross-field particle (D_{eff}) and heat convection near separatrix increases with collisionality

- \bar{n}_e/n_G is seen as an effective "proxy" for L/λ_{ei}
 => particle flux increases much faster than \bar{n}_e

At high $\bar{n}_e/n_G (L/\lambda_{ei})$, the parallel conduction "thermostat" that regulates T_{sep} is overcome by cross-field convection.

Convection increasing with collisionality↑
+ Radiation increasing with T_e↓ and n↑

... can naturally lead to regime where there exists no stable "operating point" for SOL transport/profiles,
 i.e., an operational density limit