High-field side scrape-off layer investigation

Plasma profiles and impurity screening behavior in near-double null configurations

Invited Talk I-19
Presented at the 22nd International Conference on Plasma Surface Interactions in Controlled Fusion Devices
Rome, May 30-June 3, 2016
1- Motivation
 Why study HFS SOL profiles and impurity screening?

2- Nitrogen impurity screening observations, HFS vs. LFS
 - HFS has excellent impurity screening, even in balanced-double-null
 - Parallel and perpendicular (ExB) impurity flows are important

3- HFS vs. LFS profiles in balanced double-null
 - ‘Narrow feature’ near LCFS on HFS maps to LFS

4- Summary, Next Steps
Solutions to critical plasma-material interaction and plasma sustainment challenges are needed in order to attain steady-state, net electricity from fusion ...

• Robust main chamber component lifetime solutions
 First wall components, including RF actuators, must survive the PMI onslaught of a DT reactor for sufficient time to be economically viable.

• Efficient, low PMI, heating and current drive technologies
 Achieving steady-state tokamak operation + net electricity production requires efficient (wall plug to plasma), low PMI RF actuator technologies that attain effective current profile control in a reactor.
Question: Can unique properties of the High-Field Side SOL be exploited to solve PMI and RF actuator challenges?

HFS SOL is quiescent.

Fluctuation-induced radial transport is essentially zero on high field side.

Near sonic // flows ‘fill in’ HFS SOL.
HFS SOL Investigation: Plasma profiles and impurity screening in near double-null discharges

Question: Can unique properties of the High-Field Side SOL be exploited to solve PMI and RF actuator challenges?

(1) **HFS SOL is quiescent.**

Fluctuation-induced radial transport is essentially zero on high field side.

(2) **HFS SOL has excellent impurity screening properties.**

Impurity Penetration Factors (PF) for impurity gases (N$_2$, CH$_4$) injected on the High-Field Side can be an order of magnitude lower than for impurities injected on the Low-Field Side.

\[
\text{PF} = \frac{\text{Core Impurity Ions}}{\text{Local Impurity Injection Rate}}
\]

Leading explanation - No HFS interchange turbulence + strong // flow to divertor.

Near sonic // flows ‘fill in’ HFS SOL.

Smick NF 53 (2013) 023001.

Question: Can unique properties of the High-Field Side SOL be exploited to solve PMI and RF actuator challenges?

(3) HFS SOL profiles are **controlled by magnetic topology**. Double null configurations produce very sharp profiles – no ‘shoulders’.

Smick JNM 337 (2005) 281.
Question: Can unique properties of the High-Field Side SOL be exploited to solve PMI and RF actuator challenges?

(3) HFS SOL profiles are controlled by magnetic topology. Double null configurations produce very sharp profiles – no ‘shoulders’.

Potential solution for dramatically reduced PMI:
- Locate all close-fitting first-wall structures, including RF actuators, on the High-Field Side
- Employ near-double null magnetic topology

Question: Can unique properties of the High-Field Side SOL be exploited to solve PMI and RF actuator challenges?

(3) HFS SOL profiles are controlled by magnetic topology. Double null configurations produce very sharp profiles – no ‘shoulders’.

Potential solution for dramatically reduced PMI

- Locate all close-fitting first-wall structures, including RF actuators, on the High-Field Side
- Employ near-double null magnetic topology

 • Direct external control of plasma conditions at RF actuator interface (gap, flux balance)
 • Quiescent SOL; thin SOL; no ‘blobs’ – reduced wave interactions
 • No ELM load, runaway e−, energetic ion orbit loss
 • Low neutral pressure – increased RF voltage
 • RF-generated fast e− drift away from launcher
 • Reduce neutron flux on HFS above and below midplane

HFS SOL Investigation: Plasma profiles and impurity screening in near double-null discharges

B. LaBombard, PSI 2016
HFS launch is a potential game-changer for LHCD wave physics –
dramatic improvements in accessibility, efficiency, current profile control

Splitter and multi-junction fabrication techniques produce compact LHCD launchers that can fit on the inside wall and allow for neutron shielding (Vulcan [1], ARC [2]).

HFS launch is a potential game-changer for LHCD wave physics – dramatic improvements in accessibility, efficiency, current profile control

- Higher $|B|$ on HFS improves accessibility for low n_\parallel waves [3,4].
- Produces dramatic improvement in wave penetration, off-axis CD – needed for current profile control.
- Current drive efficiency increases of ~40% or more can be obtained.

Splitter and multi-junction fabrication techniques produce compact LHCD launchers that can fit on the inside wall and allow for neutron shielding (Vulcan [1], ARC [2]).
HFS launch is highly beneficial for ICRF wave physics [1] – efficient IBW/ICW mode conversion; no ion tails; poloidal flow drive

• Incident fast wave (FW) power is absorbed nearly 100% via mode conversion (IBW/ICW)
• No formation of energetic ion tails
• No fast-ion loss, destabilization of energetic particle modes (fast alphas)
• IBW mode conversion has been found to produce flow drive in C-Mod [2] and TFTR [3]

Question: Does the HFS SOL retain good impurity screening attributes in Near Double-Null geometries?

As topology changes from LSN to DN:

- HFS SOL becomes narrower.
- HFS SOL parallel flows become weaker.

Could it be that the narrow HFS SOL in Double Null makes HFS impurity screening ineffective – maybe even worse than LFS?

Outline

1- Motivation
 Why study HFS SOL profiles and impurity screening?

2- Nitrogen impurity screening observations, HFS vs. LFS
 - HFS has excellent impurity screening, even in \textit{balanced-double-null}
 - Parallel and perpendicular (ExB) impurity flows are important

3- HFS vs. LFS profiles in \textit{balanced double-null}
 - ‘Narrow feature’ near LCFS on HFS maps to LFS

4- Summary, Next Steps
Experiment: Compare relative screening of HFS/LFS SOLs by injecting calibrated N_2 gas puffs into otherwise identical discharges

- Inject N_2 from HFS and LFS
Experiment: Compare relative screening of HFS/LFS SOLs by injecting calibrated N$_2$ gas puffs into otherwise identical discharges

- Inject N$_2$ from HFS and LFS
- Record core N content by monitoring N$^{5+}$ and N$^{6+}$ line intensities (VUV spec.)
Experiment: Compare relative screening of HFS/LFS SOLs by injecting calibrated N_2 gas puffs into otherwise identical discharges

- Inject N_2 from HFS and LFS

- Record core N content by monitoring N^{5+} and N^{6+} line intensities (VUV spec.)

- Measure HFS/LFS SOL profiles
Experiment: Compare relative screening of HFS/LFS SOLs by injecting calibrated N$_2$ gas puffs into otherwise identical discharges

- Inject N$_2$ from HFS and LFS
- Record core N content by monitoring N$^{5+}$ and N$^{6+}$ line intensities (VUV spec.)
- Measure HFS/LFS SOL profiles

with Mirror Langmuir Probe Bias

Fast-switching bias electronics provides I_{sat}, T_e, and V_f measurements at 1.1 MHz.
Experiment: Compare relative screening of HFS/LFS SOLs by injecting calibrated \(\text{N}_2 \) gas puffs into otherwise identical discharges

- Inject \(\text{N}_2 \) from HFS and LFS
- Record core N content by monitoring \(\text{N}^{5+} \) and \(\text{N}^{6+} \) line intensities (VUV spec.)
- Measure HFS/LFS SOL profiles

Diagram:

- HFS Scanning Probe
- LFS Scanning Probe
- HFS \(\text{N}_2 \) Gas Puff
- LFS \(\text{N}_2 \) Gas Puff

Mach Probe

‘Mach Probe’
4 Electrode set

With Mirror Langmuir Probe Bias

Fast-switching bias electronics provides \(I_{\text{sat}}, T_e, \) and \(V_f \) measurements at 1.1 MHz.
Experiment: Compare relative screening of HFS/LFS SOLs by injecting calibrated N\textsubscript{2} gas puffs into otherwise identical discharges

- 45 ohmic L-mode discharges where investigated
 - 5.4 tesla forward field, $B \times \nabla B$ pointing down

Topology Scan
- Lower Single Null,
- Double Null,
- Upper Single Null

Density & Current Scan
- in Balanced Double Null
 - Plasma density (x2)
 - Plasma current (x2)
HFS SOL profiles and flows are controlled exquisitely by magnetic X-point balance

Near Balanced Double Null

- Electron pressure maps between HFS-LFS *in common flux region*
- Sharp break in HFS profiles beyond

![Graph showing electron pressure, density, electron temperature, parallel flow, and density profiles.](image)
HFS SOL profiles and flows are controlled exquisitely by magnetic X-point balance

Near Balanced Double Null
- Electron pressure maps between HFS-LFS in common flux region
- Sharp break in HFS profiles beyond

Balanced Double Null
- Electron pressure maps between HFS-LFS only at LCFS
- Parallel flow to divertor reduced
(Estimated) nitrogen ionization source is very close to LCFS on HFS

Near Balanced Double Null

Balanced Double Null

HFS N₂ Ionization Profile

LFS N₂ Ionization Profile
Observation: N_2 gas injected on HFS midplane produces a ‘maypole plume’ – evidence of quiescent SOL with strong flow.

Maypole plume wraps around the center stack toward the lower divertor in a Lower Single Null discharge.
Quantifying Impurity Screening: A ‘proxy Penetration Factor’ is defined as N^{6+} line brightness divided by N_2 injection rate.

Core N content \[\frac{\partial N_N}{\partial t} = PF \cdot \Gamma_{N_2} - \frac{N_N}{\tau_p} \]

Penetration Factor

Core N confinement time

When \[\frac{N_N}{\tau_{loss}} \gg \left| \frac{\partial N_N}{\partial t} \right| \], N_N is proportional to injection rate.

Proxy Penetration Factor:

\[PF_{proxy} = \frac{N^{6+} \text{ line brightness}}{\Gamma_{N_2}} \]
Results from Topology Scan:
HFS SOL retains good N screening, even in Double Null

HFS SOL Investigation: Plasma profiles and impurity screening in near double-null discharges

B. LaBombard, PSI 2016
- Double Null HFS PF is factor of ~2.5 smaller LFS PF

=> good news for locating RF actuators on HFS and using DN topology

Results from Topology Scan:
HFS SOL retains good N screening, even in Double Null
- Double Null HFS PF is factor of ~2.5 smaller LFS PF

=> good news for locating RF actuators on HFS and using DN topology

- But HFS PF varies with X-point balance in asymmetric way

Results from Topology Scan:
HFS SOL retains good N screening, even in Double Null
- Double Null HFS PF is factor of ~2.5 smaller LFS PF

=> good news for locating RF actuators on HFS and using DN topology

- But HFS PF varies with X-point balance in asymmetric way

Unexpected: Largest HFS PF occurs with a 5 mm bias towards Lower Single Null
Results from Density & Current Scan in Balanced DN:
PFs do not depend on density or current over range studied
Plume Dispersal Observations:
Maximum HFS PF occurs when N plume has weak poloidal flow

View of HFS N ‘plume’
$\delta R_{sep} = -12$ mm – Lower Null

Front view

Expanded View on Next Slides
Plume Dispersal Observations:
Maximum HFS PF occurs when N plume has weak poloidal flow

\[\delta R_{sep} = -12 \text{ mm} \]

- 'Maypole' plume
- Strong directed // flow to lower divertor
Plume Dispersal Observations:
Maximum HFS PF occurs when N plume has weak poloidal flow

\[\delta R_{sep} = -12 \text{ mm} \]

- ‘Maypole’ plume
- Strong directed // flow to lower divertor
Plume Dispersal Observations:

Maximum HFS PF occurs when N plume has weak poloidal flow

\[\delta R_{sep} = -12 \text{ mm} \]

Lower Null

- ‘Maypole’ plume
- Strong directed parallel flow to lower divertor

\[\delta R_{sep} = 0 \text{ mm} \]

Double Null

- No directed parallel flow
- Strong ExB flow towards upper divertor
Plume Dispersal Observations:
Maximum HFS PF occurs when N plume has weak poloidal flow

$\delta R_{\text{sep}} = -12 \text{ mm}
$

Lower Null

- ‘Maypole’ plume
- Strong directed $//$ flow to lower divertor

$\delta R_{\text{sep}} = 0 \text{ mm}
$

Double Null

- No directed $//$ flow
- Strong ExB flow towards upper divertor
Plume Dispersal Observations:
Maximum HFS PF occurs when N plume has weak poloidal flow

$\delta R_{sep} = -12 \text{ mm}$
Lower Null

- ‘Maypole’ plume
- Strong directed \parallel flow to lower divertor

$\delta R_{sep} = -6 \text{ mm}$
Maximum HFS PF

- Weak net flow in \sim toroidal direction

$\delta R_{sep} = 0 \text{ mm}$
Double Null

- No directed \parallel flow
- Strong ExB flow towards upper divertor

Suggests that poloidal projection of ExB and parallel impurity flow may be cancelling in HFS SOL – i.e., impurities not swept to divertor.
Plume Dispersal Observations:

Maximum HFS PF occurs when N plume has weak poloidal flow

- ‘Maypole’ plume
- Strong directed // flow to lower divertor

Suggests that poloidal projection of ExB and parallel impurity flow may be cancelling in HFS SOL – i.e., impurities not swept to divertor.

δR_{sep} = -12 mm
Lower Null

δR_{sep} = -6 mm
Maximum HFS PF

δR_{sep} = 0 mm
Double Null

- No directed // flow
- Strong ExB flow towards upper divertor

Weak net flow in ~ toroidal direction
UV photodiode array reveals poloidal dispersal of N^{4+} ions

UV-enhanced photodiode array

- Provides spatially-resolved measure of N^{4+} dispersion (2p-2s NV lines, 123.88 and 124.28 nm)

- Note: N^{4+} peaks near separatrix region ➞ photodiode signals track dispersion of impurities in SOL
N4+ Dispersal Observations

Lower Single-Null

Change in Photodiode Voltage

Lower Single Null, $\delta R_{sep} = -11$ mm

Snapshots in time as gas is injected

[Diagram showing field line mapping to N\textsubscript{2} injection and gas puff location]

HFS SOL Investigation: Plasma profiles and impurity screening in near double-null discharges

B. LaBombard, PSI 2016
Field-aligned flow to lower divertor (‘maypole’)

- Dominant parallel flow to lower divertor
- Evidence that N$^{4+}$ drifts vertically (ExB) from field line

Result: excellent impurity ‘flushing action’ to divertor
N4+ Dispersal Observations

Upper Single-Null

Field-aligned flow to upper divertor (‘maypole’)

- Dominant parallel flow to upper divertor

- Evidence that N4+ drifts vertically (ExB) from field line

Result: excellent (the best) impurity ‘flushing action’ to divertor
N⁴⁺ Dispersal Observations

Balanced Double-Null

Dominant ExB drift to upper divertor

- Evidence that N⁴⁺ is dominated by ExB drift towards upper divertor

Result: good impurity ‘flushing action’ to divertor
N4+ Dispersal Observations

Un-Balanced Double-Null (\(\delta R_{sep} = -5\) mm)

Mix of competing parallel and ExB drift contributions

Early during puff:
- ExB flow to upper divertor dominates

Late during puff:
- Parallel flow to lower divertor with strong vertical ExB from field line

Result: poor impurity ‘flushing action’ to divertor – consistent with PF results.
Outline

1- Motivation
 Why study HFS SOL profiles and impurity screening?

2- Nitrogen impurity screening observations, HFS vs. LFS
 - HFS has excellent impurity screening, even in balanced-double-null
 - Parallel and perpendicular (ExB) impurity flows are important

3- HFS vs. LFS profiles in balanced double-null
 - ‘Narrow feature’ near LCFS on HFS maps to LFS

4- Summary, Next Steps
Profile Comparison in Balanced Double Null
Near SOL Gradients in n, T_e are ~identical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature
Profile Comparison in Balanced Double Null
Near SOL Gradients in n, T_e are ~identical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature
- Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS
Profile Comparison in Balanced Double Null
Near SOL Gradients in n, T_e are ~identical HFS to LFS

- **Double exponential profile observed in LFS SOL**
- **Single exponential observed in HFS SOL**
 – no Far SOL ‘shoulder’ feature

- Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS

HFS SOL is entirely composed of the ‘narrow feature’ seen on LFS

HFS density drops by two orders of magnitude in 6 mm

![Graph showing plasma profiles and impurity screening in near double-null discharges.](image-url)
HFS SOL Investigation: Plasma profiles and impurity screening in near double-null discharges

B. LaBombard, PSI 2016

Profile Comparison in Balanced Double Null
Near SOL Gradients in n, T_e are ~identical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature

- Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS
 HFS SOL is entirely composed of the ‘narrow feature’ seen on LFS
 HFS density drops by two orders of magnitude in 6 mm

<table>
<thead>
<tr>
<th>Current (MA)</th>
<th>HFS λ_{nT_e} (mm)</th>
<th>LFS λ_{nT_e} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>0.80</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Profile Comparison in Balanced Double Null

Near SOL Gradients in n, T_e are ~identical HFS to LFS

- **Double exponential profile observed in LFS SOL**
- **Single exponential observed in HFS SOL**
 - no Far SOL ‘shoulder’ feature
- **Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS**
 - HFS SOL is entirely composed of the ‘narrow feature’ seen on LFS
 - HFS density drops by two orders of magnitude in 6 mm

<table>
<thead>
<tr>
<th>Current (MA)</th>
<th>HFS λ_{nT_e} (mm)</th>
<th>LFS λ_{nT_e} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>0.80</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Profile Comparison in Balanced Double Null
Near SOL Gradients in n, T_e are ~identical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
- no Far SOL ‘shoulder’ feature

- Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS
 HFS SOL is entirely composed of the ‘narrow feature’ seen on LFS
 HFS density drops by two orders of magnitude in 6 mm

<table>
<thead>
<tr>
<th>Current (MA)</th>
<th>HFS λ_{nT_e} (mm)</th>
<th>LFS λ_{nT_e} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>0.80</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

~1/I_p scaling?
Summary: HFS SOL impurity screening characteristics explored vs. magnetic topology (LSN, DN, USN)

• Balanced Double Null – N_2 injected on the HFS is found to be a factor of ~ 2.5 better screened than LFS, despite very narrow HFS SOL

=> good news for the idea of employing HFS launch RF in DN

• HFS screening is least effective (1.5 x LFS) when the poloidal projection of plasma flow (parallel + $E \times B$) is minimized. This occurs in unbalanced DN, with x-point biased toward $B \times \nabla B$ direction.

• HFS screening is most effective (5 x LFS) in unbalanced DN, with x-point biased away from $B \times \nabla B$ direction.

Note: this configuration favors I-mode confinement regime
Summary: HFS vs. LFS SOL profiles compared in balanced double-null

- Pressure e-folding lengths on HFS and LFS SOLs are similar near the LCFS in balanced DN; HFS simply lacks the broad ‘shoulder’ that is present on the LFS.

 => more experiments needed to explore plasma current dependence
Summary: HFS vs. LFS SOL profiles compared in balanced double-null

- Pressure e-folding lengths on HFS and LFS SOLs are similar near the LCFS in balanced DN; HFS simply lacks the broad ‘shoulder’ that is present on the LFS.

=> more experiments needed to explore plasma current dependence

Next (last) steps in C-Mod ...
We will pursue HFS/LFS screening in balanced double-null EDA H-modes and I-modes during Alcator C-Mod’s final run campaign.
Summary: HFS vs. LFS SOL profiles compared in balanced double-null

- Pressure e-folding lengths on HFS and LFS SOLs are similar near the LCFS in balanced DN; HFS simply lacks the broad ‘shoulder’ that is present on the LFS.

=> more experiments needed to explore plasma current dependence

Next (last) steps in C-Mod ...
We will pursue HFS/LFS screening in balanced double-null EDA H-modes and I-modes during Alcator C-Mod’s final run campaign.

Thank you for your attention!