New insights on scrape-off layer profiles and turbulence in Alcator C-Mod

enabled by a scanning MLP

B. LaBombard
MIT Plasma Science and Fusion Center

http://www.psfc.mit.edu/

Invited talk presented at the 21st Joint EU-US Transport Task Force Meeting
Leysin, Switzerland – September 5-8, 2016
Acknowledgements

D. Brunner, T. Golfinopoulos, A.Q. Kuang, J.L. Terry, …

and the entire Alcator Team
We must do this empirically.

But progress towards this goal would be greatly accelerated by:

Sorting out physics behind narrow heat flux width ($1/B_\theta$ scaling) and projection to reactor

Develop quantitative predictive models for SOL transport/profiles and main-chamber fluxes that capture observed dependences

- plasma conditions (e.g. Greenwald fraction)
- poloidal location (e.g. HFS vs. LFS)
- magnetic topology (e.g. double-null, single-null)
- divertor topology ...

We have studied the C-Mod SOL in detail and most recently are exploiting the capabilities of a new Mirror Langmuir Probe (MLP) diagnostic.

This talk presents some key observations that (I hope) will encourage as well as challenge the development of first-principles physics models ...
Key Messages

(1) SOL exhibits a well-defined structure that is largely invariant – similar in limited vs. diverted topologies, L- vs. H-mode, ... Near / Far SOL profiles, shear layer, structure velocities, 1/B\(\theta\) heat flux width, ...

(2) ‘Narrow heat flux width’ feature = ‘near SOL’.

(3) Bursty, interchange-like transport dominates far SOL; Drift-like turbulence (and modes) dominate near SOL. => Example: Quasi-Coherent Mode

(4) HFS/LFS transport asymmetries (for background plasma and impurities) are very large, with profound consequences. => May be exploited to solve critical PMI challenges in reactors
What is a Mirror Langmuir Probe (MLP)?
Mirror Langmuir Probe\(^1\)

An electronic device that adjusts its I-V response \textit{in real time} to match that of an actual Langmuir probe

- Fast-switching voltage bias applied to actual Langmuir Probe (LP) and Mirror Langmuir Probe (MLP)

\[V_{\text{bias}}: \text{3-State Voltage Waveform} \]

\[V^+ \quad V_f \quad V^- \]

\[0.9 \ \mu s \]

Mirror Langmuir Probe

An electronic device that adjusts its I-V response in real time to match that of an actual Langmuir probe

- Fast-switching voltage bias applied to actual Langmuir Probe (LP) and Mirror Langmuir Probe (MLP)

- By active feedback, I_{sat}, T_e and V_f ‘controls’ are adjusted so that I-V from MLP and LP are identical.

MLP I-V Model:

$$I = I_{sat} \{\exp[(V-V_f)/T_e] - 1\}$$

Mirror Langmuir Probe

An electronic device that adjusts its I-V response in real time to match that of an actual Langmuir probe

- Fast-switching voltage bias applied to actual Langmuir Probe (LP) and Mirror Langmuir Probe (MLP)

- By active feedback, I_{sat}, T_e and V_f ‘controls’ are adjusted so that I-V from MLP and LP are identical.

MLP I-V Model:

\[I = I_{sat} \left\{ \exp\left(\frac{V-V_f}{T_e}\right) - 1 \right\} \]

Mirror Langmuir Probe1
An electronic device that adjusts its I-V response \textit{in real time} to match that of an actual Langmuir probe.

- Fast-switching voltage bias applied to actual Langmuir Probe (LP) and Mirror Langmuir Probe (MLP).

- By active feedback, I_{sat}, T_e and V_f ‘controls’ are adjusted so that I-V from MLP and LP are identical.

- Time-averages (~1 ms) of T_e and I_{sat} signals are used to adjust for optimum bias waveform.

Mirror Langmuir Probe\(^1\)

An electronic device that adjusts its I-V response *in real time* to match that of an actual Langmuir probe

- Fast-switching voltage bias applied to actual Langmuir Probe (LP) and Mirror Langmuir Probe (MLP)

- By active feedback, \(I_{sat}\), \(T_e\) and \(V_f\) ‘controls’ are adjusted so that I-V from MLP and LP are identical.

- Time-averages (~1 ms) of \(T_e\) and \(I_{sat}\) signals are used to adjust for optimum bias waveform

Result:
- MLP system maintains optimum “triple probe bias” dynamically.
- \(I_{sat}\), \(T_e\) and \(V_f\) at 1.1 MHz are obtained by fitting digitized I-V data (post processing)

MLP bias is implemented separately on 4-electrodes on a C-Mod horizontal scanning probe drive

MLP simultaneously measures $\tilde{n}, T_e, \tilde{\phi}$ on all 4 electrodes ($\sim 1 \mu s$)
MLP bias is implemented separately on 4-electrodes on a C-Mod horizontal scanning probe drive

Enables new capabilities:
- High resolution \(n, T_e, \Phi \) profiles
- Structure velocities
- Fluctuations and transport

Particle flux
\[
\Gamma_r = \langle \vec{n} \vec{E}_\theta \rangle / B
\]

Heat fluxes
\[
Q_{cr} = (5/2) \langle \vec{P}_e \vec{E}_\theta \rangle / B
= \langle 5/2 T_e \Gamma_r \rangle + (5/2) \langle n \vec{T}_e \vec{E}_\theta \rangle / B
\]

Turbulence mode structure
\(k_\theta \) resolved \(\vec{n}, \vec{T}_e, \vec{\Phi} \) and relative phase angles

Momentum fluxes
\[
\langle \vec{V}_r \vec{V}_\parallel \rangle, \langle \vec{n} \vec{V}_r \vec{V}_\parallel \rangle, \langle \vec{V}_r \vec{V}_\theta \rangle, \langle \vec{n} \vec{V}_r \vec{V}_\theta \rangle
\]
Q: What is the origin of the ‘narrow heat flux feature’ seen on divertor target plates?
 ... with $1/B_\theta$ scaling
 ... that is a challenge for ITER and future reactor designs?

Well, it also appears in inner-wall limited plasmas...
Insight is gained by looking at C-Mod inner-wall limited discharges\(^1\)

Motivation: Look for ‘Narrow \(\lambda_q\)’ feature in the SOL that could explain IR camera ‘footprints’ on JET and elsewhere\(^2\)

\[0.22 < \frac{n}{n_G} < 0.35 \] – low recycling regime

\[0.4 \ 0.6 \ 0.8 \ 1.0 \ 1.2 \]

\[\text{Plasma Current (MA)} \]

\[4 \ 5 \ 6 \ 7 \]

\[\text{Toroidal FIeld (tesla)} \]

\[q_{95} = 2.7; \kappa = 1.17 \]

\[q_{95} = 3.1; \kappa = 1.31 \]

\[q_{95} = 3.2; \kappa = 1.24 \]

\[q_{95} = 4.1; \kappa = 1.16 \]

Experiment produced 21 IWL plasmas

focus on these two cases

Ip = 1.0 MA, B_T=6.4 tesla

1.1 MHz data sampling. Each trace has ~40,000 points.
Data: Scanning Mirror Langmuir Probe

Ip = 1.0 MA, B_T = 6.4 tesla

Fluctuations are not noise!
MLP resolves ‘bursty’ events of SOL.
Normally difficult to assess ‘time-averaged’ profiles

1.1 MHz data sampling. Each trace has ~40,000 points.

New Insights on SOL profiles & turbulence ...
B. LaBombard, EU-TTF 2016
Data: Scanning Mirror Langmuir Probe

Ip = 1.0 MA, Bₜ=6.4 tesla

Density

Electron Temperature

Plasma Potential

Probe Floating Potential

Average of 4 electrodes + 200 μs smoothing

Ip = 1.0 MA, Bₜ=6.4 tesla

Mit PSFC

New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016
Data: WASP1 (conventional probe)

\[Ip = 1.0 \text{ MA}, \quad B_T = 6.4 \text{ tesla} \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{wasp_diagram.png}
\caption{WASP diagram with electrode positions and probe floating potential graph.}
\end{figure}

\begin{itemize}
 \item **Density**
 \item **Electron Temperature**
 \item **Plasma Potential**
 \item **Probe Floating Potential**
\end{itemize}

\[\text{Average of 2 ‘upstream’ electrodes + smoothing} \]

\[\text{Density: } 10^{20} \text{ m}^{-3} \]
\[\text{Electron Temperature: eV} \]
\[\text{Plasma Potential: volts} \]
\[\text{Probe Floating Potential: volts} \]

\[Rho (\text{mm}) \]

\[-4 \quad -2 \quad 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \]

Profiles exhibit typical ‘Near’ and ‘Far’ SOL zones.

Electron Pressure

Parallel Heat Flux,
$q// = 7 \text{T}_e \text{ J} \text{sat}$

‘Narrow heat flux feature’ = Near SOL zone

Ip = 1.0 MA, $B_T = 6.4$ tesla
MLP data cleanly resolve q_{\parallel} profile features

Fit ‘near’, ‘far’ λ_q to MLP profiles and look for trends...

$\lambda_{pe1} = 1.2$ mm
$\lambda_{pe2} = 12$ mm

$\lambda_{q1} = 1.1$ mm
$\lambda_{q2} = 10$ mm

$q_{\parallel} = q_1 \exp(-\rho/\lambda_{q1}) + q_2 \exp(-\rho/\lambda_{q2})$
MLP data cleanly resolve q_{\parallel} profile features

Fit ‘near’, ‘far’ λ_q to MLP profiles and look for trends...

$Ip = 1.0\ MA, B_T = 6.4\ tesla$

Electron Pressure, p_e

Parallel Heat Flux, q_{\parallel}

Change-in-slope feature at LCFS

$q_{\parallel} = q_1\exp(-\rho/\lambda_{q1}) + q_2\exp(-\rho/\lambda_{q2})$

$\lambda_{pe1} = 1.2\ mm$

$\lambda_{pe2} = 12\ mm$

$\lambda_{q1} = 1.1\ mm$

$\lambda_{q2} = 10\ mm$
MLP data cleanly resolve q_{\parallel} profile features

Fit ‘near’, ‘far’ λ_q to MLP profiles and look for trends...

$Ip = 0.4$ MA, $B_T = 4.0$ tesla

Electron Pressure, p_e

Parallel Heat Flux, q_{\parallel}

$q_{\parallel} = q_1 \exp(-\rho/\lambda_{q1}) + q_2 \exp(-\rho/\lambda_{q2})$

$\lambda_{pe1} = 3.0$ mm

$\lambda_{pe2} = 95$ mm

$\lambda_{q1} = 2.6$ mm

$\lambda_{q2} = 44$ mm
MLP data cleanly resolve q_{\parallel} profile features

Fit ‘near’, ‘far’ λ_q to MLP profiles and look for trends...

Electron Pressure, p_e

$\lambda_{pe1} = 3.0$ mm
$\lambda_{pe2} = 95$ mm

Parallel Heat Flux, q_{\parallel}

$\lambda_{q1} = 2.6$ mm
$\lambda_{q2} = 44$ mm

$q_{\parallel} = q_1 \exp(-\rho/\lambda_{q1}) + q_2 \exp(-\rho/\lambda_{q2})$

q// = $q_1 \exp(-\rho/\lambda_{q1}) + q_2 \exp(-\rho/\lambda_{q2})$

Ip = 0.4 MA, $B_T=4.0$ tesla

New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016
Result from I_p and B_T scan: ‘Near’ λ_q scales $\sim 1/I_p$
Result from I_p and B_T scan: ‘Near’ λ_q scales ~ $1/I_p$

Makes contact with $\lambda_q \sim 1/I_p$ scaling seen in EDA H-modes, low density L-modes (C-Mod)1 and H-modes from multi-machine database2.

\[\lambda_q \sim 1/I_p\]

Implication: ~ same physics sets λ_q under a wide range of conditions

\[\lambda_q \text{ Data from Scanning MLP}\]

<table>
<thead>
<tr>
<th>q_{95}</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>1.16</td>
</tr>
<tr>
<td>3.2</td>
<td>1.24</td>
</tr>
<tr>
<td>3.1</td>
<td>1.31</td>
</tr>
<tr>
<td>2.7</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Inner Wall Limited

\[\lambda_{q,IR} \sim 1/I_p\]

\[\lambda_{q,LP} \sim 1/I_p\]

Experiment1: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Experiment¹: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment¹: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment1: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment\(^1\): Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment1: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment\(^1\): Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment\(^1\): Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment\(^1\): Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment1: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Experiment\(^1\): Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation \(\sim 1.65\)

Inner-Wall-Limited
- X-point flux surface is \(\sim 3\ \lambda_p\) beyond LCFS
- Elongation \(\sim 1.35\)

Experiment1: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Inner-Wall-Limited
- X-point flux surface is $\sim 3 \lambda_p$ beyond LCFS
- Elongation ~ 1.35

Track systematic changes (if any) of the LFS SOL profiles

1 LaBombard, APS 2008 (http://www-internal.psfc.mit.edu/~labombard/APS2008_Talk.pdf)
Experiment¹: Does presence of separatrix affect LFS SOL profiles?

Test: Run identical ohmic L-mode discharges, with LCFS topology varying from Double-Null to Inner-Wall-Limited

Double-Null
- X-points define LCFS
- Elongation ~ 1.65

Inner-Wall-Limited
- X-point flux surface is ~3 λ_p beyond LCFS
- Elongation ~ 1.35

Track systematic changes (if any) of the LFS SOL profiles

Are steep pressure gradients near the LCFS affected by separatrix location?

[1] LaBombard, APS 2008
Result: LFS SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
Result: LFS SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
- Separatrix sweep has no effect on steep gradients in Near SOL
Result: LFS SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
- Separatrix sweep has no effect on steep gradients in Near SOL
Result: LFS SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
- Separatrix sweep has no effect on steep gradients in Near SOL
Result: LFS SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
- Separatrix sweep has no effect on steep gradients in Near SOL
Result: LFS SOL profiles are robustly insensitive to location of separatrix flux surface

- Diverted profiles are reference
- Separatrix sweep has no effect on steep gradients in Near SOL
- Steep gradients do not appear in Far SOL when separatrix is positioned there
Q: Why is LFS SOL profile insensitive to separatrix location?

Q: What sets the breakpoint between ‘near’ and ‘far’ zones?

Q:

Let’s examine the SOL structure in detail with the MLP...
MLP reveals SOL structure in detail –

‘Near’ SOL region

Profiles shifted to put plasma potential maximum at LCFS

Diverted

Density

Breakpoint

Electron Temperature

Plasma Potential

New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016
MLP reveals SOL structure in detail –

‘Near’ SOL region

Profiles shifted to put plasma potential maximum at LCFS

Shift is consistent with power balance analysis, $T_{e,sep} \sim 60$ eV
MLP reveals SOL structure in detail –
very similar in diverted and limited discharges

New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016
MLP reveals SOL structure in detail – very similar in diverted and limited discharges

Profiles of normalized RMS fluctuation level are similar
MLP reveals SOL structure in detail – very similar in diverted and limited discharges

Profiles of fluctuation PDF Skewness are similar
Common Feature: Robust ExB shear layer at LCFS
Common Feature: Robust ExB shear layer at LCFS

New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016

Electron Pressure

Diverted

Ideal ballooning growth rate

Electron Pressure

Limited

ExB shear

\(\nabla V_{ExB} \)

\(\frac{C_s}{\sqrt{\lambda_p R / 2}} \)

\(\nabla V_{ExB} \)

\(\frac{C_s}{\sqrt{\lambda_p R / 2}} \)
Plasma flows appear constrained: \[\sim\text{toroidal rotation outside LCFS (LFS)}\]
Plasma flows appear constrained: ~toroidal rotation outside LCFS (LFS)
Plasma flows appear constrained: \(\sim\) toroidal rotation outside LCFS (LFS)

- Poloidal projections of parallel flow and ExB cancel in SOL

\[\Rightarrow \] Plasma motion is \(\sim\) pure toroidal rotation there
Plasma flows appear constrained: ~toroidal rotation outside LCFS (LFS), ~ExB flow compensating ion diamag. just inside LCFS

- Poloidal projections of parallel flow and ExB cancel in SOL

=> Plasma motion is ~ pure toroidal rotation there
Plasma flows appear constrained: ~toroidal rotation outside LCFS (LFS), ~ExB flow compensating ion diamag. just inside LCFS

- Poloidal projections of parallel flow and ExB cancel in SOL
 => Plasma motion is ~ pure toroidal rotation there

- ExB tends to cancel ion diamagnetic flow (using e⁻ diag. as proxy) just inside LCFS
 => Consistent with neoclassical constraints
Plasma flows appear constrained: ~toroidal rotation outside LCFS (LFS), ~ExB flow compensating ion diamag. just inside LCFS

Similar features in Limited and Diverted plasmas
Plasma flows appear constrained: \(\sim \) toroidal rotation outside LCFS (LFS), \(\sim \) ExB flow compensating ion diamag. just inside LCFS.

Implication: Plasma potential profile -- defined by transition between open and closed field lines and associated ambipolarity constraints -- is a dominant physics component that controls SOL structure.
Potential Insight: Breakpoint between ‘near’ and ‘far’ SOL is closely associated with location that fluctuations change from drift to interchange-like.

![Graph showing electron pressure, fluctuation time delay, and poloidal velocity with a breakpoint highlighting](image-url)
Potential Insight: Breakpoint between ‘near’ and ‘far’ SOL is closely associated with location that fluctuations change from drift to interchange-like.
Potential Insight: Breakpoint between ‘near’ and ‘far’ SOL is closely associated with location that fluctuations change from drift to interchange-like.

Fluctuation propagation changes from electron to ion dia. direction near breakpoint.

Fluctuations are drift-like in near SOL

$$V_{\text{fluct}} \sim V_{\text{ExB}} + V_{\text{de}}$$
Potential Insight: Breakpoint between ‘near’ and ‘far’ SOL is closely associated with location that fluctuations change from drift to interchange-like.

Near-Far breakpoint is where $V_{\text{ExB}} + V_{\text{de}} \sim 0$; V_{ExB} shear small.

Fluctuation propagation changes from electron to ion dia. direction near breakpoint.

Fluctuations are drift-like in near SOL $V_{\text{fluct}} \sim V_{\text{ExB}} + V_{\text{de}}$

... and interchange-like in far SOL $V_{\text{fluct}} \sim V_{\text{ExB}}$
Potential Insight: Breakpoint between ‘near’ and ‘far’ SOL is closely associated with location that fluctuations change from drift to interchange-like.
New Insight:

Drift-wave like turbulence near LCFS plays the key role of enhancing particle transport in the pedestal of C-Mod EDA H-modes.

Mirror Langmuir Probe measurements reveal that the Quasi-Coherent Mode (QCM) is a drift-like mode that spans the LCFS...
Mirror Langmuir Probe investigation of Quasi-Coherent Mode

Experimental setup:

- Setup ohmic EDA H-mode
- Plunge probe across QCM mode layer
- Record $k_{\theta}, \tilde{n}, \tilde{T}_e, \tilde{\Phi}$ response
- Deduce mode character (drift, interchange, ...)

MLP passes through mode layer – reveals density fluctuation with frequency and wavenumber of QCM

- Mode exists near LCFS; radial mode width ~3 mm FWHM, consistent with GPI
- Frequency, poloidal wave number and propagation in electron diamagnetic direction -- consistent with B_θ probe, PCI and GPI diagnostics
New Insights on SOL profiles & turbulence ...

Snapshot of QCM: large amplitude, ~in-phase, density, electron temperature and potential fluctuations

Profiles from East electrode

Density

Electron Temperature

Plasma Potential

\[\frac{\Delta n}{\langle n \rangle} \sim 30\% \quad \frac{\Delta T_e}{\langle T_e \rangle} \sim 45\% \quad \frac{\Delta \Phi}{\langle T_e \rangle} \sim 45\% \]

\(I_{sat} \) Fluctuation Power

\(80 \) kHz < \(f < 120 \) kHz

Time (\(\mu \)sec) after 1.196 sec

\[\begin{align*}
\text{Density} & \\
\text{Electron Temperature} & \\
\text{Plasma Potential} &
\end{align*} \]
New Insights on SOL profiles & turbulence ... B. LaBombard, EU-TTF 2016

Snapshot of QCM: large amplitude, ~in-phase, density, electron temperature and potential fluctuations

Cross Power Spectrum: Density and Potential

Potential lags Density with a phase angle of ~ 16 degrees

\[V_r = \frac{\langle \tilde{n}\tilde{E}_\theta \rangle}{\langle n \rangle B} \approx 10 \text{ m/s} \]

=> Drift wave

=> Drives transport
New Insights on SOL profiles & turbulence ...

Snapshot of QCM: **large amplitude, ~in-phase, density, electron temperature and potential fluctuations**

Cross Power Spectrum: **Density and Potential**

Potential lags **Density** with a phase angle of ~ 16 degrees

$$V_r = \langle \tilde{n} \tilde{E}_\theta \rangle / \langle \tilde{n} \rangle B \sim 10 \text{ m/s}$$

=> Drift wave

Simple Boltzmann electron response?

Compute $$n_B$$ required to satisfy

$$n_B = \langle n \rangle \exp \left[(\Phi - \langle \Phi \rangle) / T_e \right]$$

$$n_B$$ is ~1.5x larger than measured $$\tilde{n}$$

Not a simple Boltzmann response

Quasi-coherent mode propagates at electron diamagnetic drift velocity in the plasma frame ~ embedded in the broadband turbulence of the near SOL

Velocities computed from East electrode profiles

\[V_{dpe} = \frac{\nabla_r n T_e \times b}{nB} \]
\[V_{de} = \frac{T_e \nabla_r n \times b}{nB} \]
\[V_{ExB} = \frac{b \times \nabla_r \Phi}{B} \]

QCM frequency is quantitatively consistent with \(k_\theta \sim 1.5 \text{ rad/cm mode} \) near the LCFS propagating with velocity between \(V_{dpe} \) and \(V_{de} \) in the plasma frame.
These QCM observations have potentially important implications.

Can a drift-like mode can be *externally driven near the LCFS?* If so, it might offer a means to control impurity uptake in H-modes.

In C-Mod, we have recently performed such a proof-of-concept experiment, successfully exciting a QCM-like drift-wave mode near the LCFS with a ‘shoelace antenna’1,2.

Details will be presented by Ted Golfinopoulos at the November APS meeting in San Jose, CA.

What about the HFS SOL?
The HFS SOL exhibits some amazing properties.

HFS SOL is quiescent.

Fluctuation-induced radial transport is essentially zero on high field side.

Near sonic // flows ‘fill in’ HFS SOL.
The HFS SOL exhibits some amazing properties.

HFS SOL is quiescent.
Fluctuation-induced radial transport is essentially zero on high field side.

HFS SOL has excellent impurity screening properties.
Impurity Penetration Factors (PF) for impurity gases (N\textsubscript{2}, CH\textsubscript{4}) injected on the High-Field Side can be an order of magnitude lower than for impurities injected on the Low-Field Side.

\[
PF = \frac{\text{Core Impurity Ions}}{\text{Local Impurity Injection Rate}}
\]

Leading explanation - No HFS interchange turbulence + strong // flow to divertor.

New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016
HFS SOL profiles and flows are controlled exquisitely by magnetic X-point balance

Near Balanced Double Null

- Electron pressure maps between HFS-LFS *in common flux region*
- Sharp break in HFS profiles beyond
HFS SOL profiles and flows are controlled exquisitely by magnetic X-point balance

Near Balanced Double Null
- Electron pressure maps between HFS-LFS in common flux region
- Sharp break in HFS profiles beyond

Balanced Double Null
- Electron pressure maps between HFS-LFS only at LCFS
- Parallel flow to divertor reduced

New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016
HFS-LFS Profile Comparison in Balanced Double Null

Near SOL Gradients in n, T_e are ~identical HFS to LFS

- **Double exponential** profile observed in LFS SOL
- **Single exponential** observed in HFS SOL
 – no Far SOL ‘shoulder’ feature
HFS-LFS Profile Comparison in Balanced Double Null

Near SOL Gradients in n, T_e are ~identical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature
- Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS
HFS-LFS Profile Comparison in Balanced Double Null

Near SOL Gradients in \(n, T_e \) are \(~\text{identical}\) HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature
- Magnitude of electron pressure e-fold in near SOL is \(~\text{same}\) HFS/LFS

 HFS SOL is entirely composed of

 the ‘narrow feature’ seen on LFS

 HFS density drops by two orders of magnitude in 6 mm
New Insights on SOL profiles & turbulence ...

B. LaBombard, EU-TTF 2016

HFS-LFS Profile Comparison in Balanced Double Null

Near SOL Gradients in n, T_e are ~identical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature
- Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS
 HFS SOL is entirely composed of the ‘narrow feature’ seen on LFS
 HFS density drops by two orders of magnitude in 6 mm

<table>
<thead>
<tr>
<th>Current (MA)</th>
<th>HFS λ_{nT_e} (mm)</th>
<th>LFS λ_{nT_e} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>0.80</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

$n/n_G = 0.22$

$$22.5 \exp(-\rho/1.73) + 9.2/\exp(-\rho/8.37)$$

$$25.6 \exp(-\rho/1.62)$$

$$29.1 \exp(-\rho/2.77) + 28.3/\exp(-\rho/14.9)$$
HFS-LFS Profile Comparison in Balanced Double Null

Near SOL Gradients in n, T_e are ~identical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature

- Magnitude of electron pressure e-fold in near SOL is ~ same HFS/LFS
 HFS SOL is entirely composed of the ‘narrow feature’ seen on LFS
 HFS density drops by two orders of magnitude in 6 mm

<table>
<thead>
<tr>
<th>Current (MA)</th>
<th>HFS λ_{nT_e} (mm)</th>
<th>LFS λ_{nT_e} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>0.80</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>
HFS-LFS Profile Comparison in Balanced Double Null

Near SOL Gradients in n, T_e are \simidentical HFS to LFS

- Double exponential profile observed in LFS SOL
- Single exponential observed in HFS SOL
 – no Far SOL ‘shoulder’ feature
- Magnitude of electron pressure e-fold in near SOL is \sim same HFS/LFS
 HFS SOL is entirely composed of the ‘narrow feature’ seen on LFS
 HFS density drops by two orders of magnitude in 6 mm

<table>
<thead>
<tr>
<th>Current (MA)</th>
<th>HFS λ_{nT_e} (mm)</th>
<th>LFS λ_{nT_e} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>0.80</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

~1/Ip scaling?
New Idea: Exploit unique properties of the High-Field Side SOL to solve PMI and RF actuator challenges

- Locate all close-fitting first-wall structures, including RF actuators, on the High-Field Side
- Employ near-double null magnetic topology

Potential solution for dramatically reduced PMI

- Direct external control of plasma conditions at RF actuator interface (gap, flux balance)
- Excellent impurity screening (recently verified for near – double null plasmas\(^1\))

Plus a host of other benefits ...
- Quiescent SOL; thin SOL; no ‘blobs’ – reduced wave interactions
- No ELM load, runaway e\(^-\), energetic ion orbit loss
- Low neutral pressure – increased RF voltage
- RF-generated fast e\(^-\) drift away from launcher
- Access to excellent wave physics (LHCD and ICRF heating)
- Reduce neutron flux on HFS above and below midplane

Key Messages

(1) SOL exhibits a well-defined structure that is largely invariant – similar in limited vs. diverted topologies, L- vs. H-mode, ...
 Near / Far SOL profiles, shear layer, structure velocities, $1/B_\theta$ heat flux width, ...

(2) ‘Narrow heat flux width’ feature = ‘near SOL’.

(3) Bursty, interchange-like transport dominates far SOL;
 Drift-like turbulence (and modes) dominate near SOL.
 => Example: Quasi-Coherent Mode

(4) HFS/LFS transport asymmetries (for background plasma and impurities) are very large, with profound consequences.
 => May be exploited to solve critical PMI challenges in reactors