Plasma flows and critical gradient phenomena near the last-closed flux surface

B. LaBombard
Recent C-Mod experiments have revealed important aspects of transport physics at the SOL interface...

...which may be fundamental to understanding the edge pedestal
Recent C-Mod experiments have revealed important aspects of transport physics at the SOL interface...

...which may be fundamental to understanding the edge pedestal

- Strong (near-sonic) plasma flows just outside the LCFS
 - Ballooning-like transport drive mechanism
 - Connection to magnetic topology (LSN/USN)
 - Toroidal rotation 'boundary condition' on confined plasma
Recent C-Mod experiments have revealed important aspects of transport physics at the SOL interface...

...which may be fundamental to understanding the edge pedestal

- **Strong (near-sonic) plasma flows just outside the LCFS**
 - Ballooning-like transport drive mechanism
 - Connection to magnetic topology (LSN/USN)
 - Toroidal rotation 'boundary condition' on confined plasma

- **'Critical gradient' behavior of pressure profiles near the LCFS**
 - L-mode: pressure gradients 'clamped' at a value of ∇_{MHD} that depends on collisionality
 - \Rightarrow edge plasma maps to a 2-D 'phase space' $(\nabla_{MHD}, \text{collisionality})$
 - \Rightarrow 'density limit boundary' at high collisionality
Recent C-Mod experiments have revealed important aspects of transport physics at the SOL interface...

...which may be fundamental to understanding the edge pedestal

- **Strong (near-sonic) plasma flows just outside the LCFS**
 - Ballooning-like transport drive mechanism
 - Connection to magnetic topology (LSN/USN)
 - Toroidal rotation 'boundary condition' on confined plasma

- **'Critical gradient' behavior of pressure profiles near the LCFS**
 - L-mode: pressure gradients 'clamped' at a value of ∇_{MHD}
 that depends on collisionality
 => edge plasma maps to a 2-D 'phase space' (∇_{MHD}, collisionality)
 => 'density limit boundary' at high collisionality
 - H-mode: scaling of peak pedestal pressure gradients with I_p^2 (Hughes)
Recent C-Mod experiments have revealed important aspects of transport physics at the SOL interface...

...which may be fundamental to understanding the edge pedestal

- **Strong (near-sonic) plasma flows just outside the LCFS**
 - Ballooning-like transport drive mechanism
 - Connection to magnetic topology (LSN/USN)
 - Toroidal rotation 'boundary condition' on confined plasma

- **'Critical gradient' behavior of pressure profiles near the LCFS**
 - L-mode: pressure gradients 'clamped' at a value of ∇_{MHD} that depends on collisionality
 => edge plasma maps to a 2-D 'phase space' (∇_{MHD}, collisionality)
 => 'density limit boundary' at high collisionality
 - H-mode: scaling of peak pedestal pressure gradients with I_p^2 (Hughes)

- **Most recent: Potential link between 'critical gradient' and SOL flows**
 - L-mode: attainable value of ∇_{MHD} depends on LSN/USN topology
 => edge flows are correspondingly different
Recent C-Mod experiments have revealed important aspects of transport physics at the SOL interface...

...which may be fundamental to understanding the edge pedestal

- **Strong (near-sonic) plasma flows just outside the LCFS**
 - Ballooning-like transport drive mechanism
 - Connection to magnetic topology (LSN/USN)
 - Toroidal rotation 'boundary condition' on confined plasma

- **'Critical gradient' behavior of pressure profiles near the LCFS**
 - L-mode: pressure gradients 'clamped' at a value of ∇_{MHD} that depends on collisionality
 - \Rightarrow edge plasma maps to a 2-D 'phase space' (∇_{MHD}, collisionality)
 - \Rightarrow 'density limit boundary' at high collisionality
 - H-mode: scaling of peak pedestal pressure gradients with I_p^2 (Hughes)

- **Most recent: Potential link between 'critical gradient' and SOL flows**
 - L-mode: attainable value of ∇_{MHD} depends on LSN/USN topology
 - \Rightarrow edge flows are correspondingly different

L-H threshold power: lower with 'favorable' SOL flows (LSN or lower-limited)
Transport-driven plasma flows in the SOL
Scrape-off layer flow patterns in a tokamak are complex - Near-sonic flow along field lines occurs *far from material surfaces*

Representative composite of parallel flow data† from JT60-U, JET, C-Mod

- Strong flows along B ($M_{||} \sim 0.5$)
- Components which are both dependent and independent of the sign of B

Evidence for Cross-field Transport Asymmetries...
...Driving Near-Sonic Flows in Inner SOL
Evidence for Cross-field Transport Asymmetries...
...Driving Near-Sonic Flows in Inner SOL

Inner SOL plasma 'disappears' in Double Null

$\ln T$ reduced by factor of 4
Evidence for Cross-field Transport Asymmetries....
...Driving Near-Sonic Flows in Inner SOL

Inner SOL plasma 'disappears' in Double Null
\(L_n T \) reduced by factor of 4

Fluctuation levels persistently lower on Inner SOL
Consistent with low transport in inner SOL
Evidence for Cross-field Transport Asymmetries...
...Driving Near-Sonic Flows in Inner SOL

Inner SOL plasma 'disappears' in Double Null
L_nT reduced by factor of 4

Fluctuation levels persistently lower on Inner SOL
Consistent with low transport in inner SOL

Near-sonic // flows on Inner SOL
Always directed from outer to inner SOL in upper and lower-null, but ~stagnant in double-null
Evidence for Cross-field Transport Asymmetries....
...Driving Near-Sonic Flows in Inner SOL

Inner SOL plasma 'disappears' in Double Null
$\ln T$ reduced by factor of 4

Fluctuation levels persistently lower on Inner SOL
Consistent with low \parallel transport in inner SOL

Near-sonic \parallel flows on Inner SOL
Always directed from outer to inner SOL in upper and lower-null, but ~stagnant in double-null

Plasma exists on inner SOL because it flows along field lines from outer SOL
Evidence for Cross-field Transport Asymmetries....
...Driving Near-Sonic Flows in Inner SOL

Inner SOL plasma 'disappears' in Double Null
L_nT reduced by factor of 4

Fluctuation levels persistently lower on Inner SOL
Consistent with low transport in inner SOL

Near-sonic // flows on Inner SOL
Always directed from outer to inner SOL in upper and lower-null, but ~stagnant in double-null

Outer SOL flows weaker, co-current, appear modulated by topology...

Plasma exists on inner SOL because it flows along field lines from outer SOL
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

Distance Between Primary and Secondary Separatrices (mm)
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: lower => double => upper-null
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: lower => double => upper-null

- Central plasma toroidal rotation correspondingly shifts more toward counter-current direction
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: lower => double => upper-null

- Central plasma toroidal rotation correspondingly shifts more toward counter-current direction

- Toroidal velocity change is largest on inner SOL
 => suggests inner SOL flow is responsible for change in rotation of confined plasma
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: lower => double => upper-null

- Central plasma toroidal rotation correspondingly shifts more toward counter-current direction

- Toroidal velocity change is largest on inner SOL
 => suggests inner SOL flow is responsible for change in rotation of confined plasma

- ~5 mm change in x-point balance is sufficient to reverse flows
 => consistent with scale length of pressure gradients near separatrix
X-point Topology Sets Magnitude and Direction of Transport-Driven SOL Flows => Core Plasma Rotation is Affected

- Toroidal projections of flows near separatrix shift toward counter-current in sequence: **lower** => **double** => **upper-null**

- Central plasma toroidal rotation correspondingly shifts more toward counter-current direction

- Toroidal velocity change is largest on inner SOL => suggests inner SOL flow is responsible for change in rotation of confined plasma

- ~5 mm change in x-point balance is sufficient to reverse flows => consistent with scale length of pressure gradients near separatrix

Transport-driven SOL flows impose boundary conditions on confined plasma
Transport-Driven SOL Flows: a mechanism for plasma near the separatrix to 'spin-up' toroidally, depending on x-point topology.

- transport-driven parallel SOL flows

- Ballooning-like transport leads to a helical flow component in the SOL with *net volume-averaged toroidal momentum*: co-current for lower null, counter-current for upper null.
Transport-Driven SOL Flows: a mechanism for plasma near the separatrix to 'spin-up' toroidally, depending on x-point topology.

- Transport-driven parallel SOL flows

 - Ballooning-like transport leads to a helical flow component in the SOL with net volume-averaged toroidal momentum: co-current for lower null, counter-current for upper null.

 - Being free to rotate only in the toroidal direction, the confined plasma can acquire a corresponding co-current or counter-current rotation increment.

Influence on plasma rotation.
Transport-Driven SOL Flows: a mechanism for plasma near the separatrix to 'spin-up' toroidally, depending on x-point topology

- Transport-driven parallel SOL flows

- Ballooning-like transport leads to a helical flow component in the SOL with \(\text{net volume-averaged toroidal momentum: co-current for lower null, counter-current for upper null} \)

- Being free to rotate only in the toroidal direction, the confined plasma can acquire a corresponding co-current or counter-current rotation increment

- Via momentum coupling across separatrix, a topology-dependent toroidal rotation component, \(E_r/B_\parallel \), should appear in the SOL

\[\Rightarrow \text{Stronger } E_r \text{ in SOL for lower null} \]
\[\Rightarrow \text{Weaker } E_r \text{ in SOL for upper null} \]
Plasma Potentials Near Separatrix Systematically Increase in the Sequence: **Upper**, **Double**, **Lower-Null**

Plasma potential profiles estimated from sheath potential drop

Caution: Accuracy of potential profile shape is uncertain!

- More positive E_r in SOL near separatrix in **Lower-Null**

$|E_r/B| \sim 8 \text{ km/s}$, \simconsistent with measured change in parallel (toroidal) flow in SOL
Critical gradient phenomena near the separatrix
'Critical Gradient' transport behavior is suggested in first-principles 3-D Electromagnetic Fluid Diffusion turbulence simulations†

Turbulence character & transport level determined primarily by two dimensionless parameters

Poloidal Beta Gradient $\nabla_{MHD} \sim q^2 R \frac{P}{B^2}$

Inverse Collisionality Parameter $\nabla_d \sim \frac{1}{q} \left(\frac{\nabla_{el}}{R} \right)^{1/2} \left(\frac{R}{L_n} \right)^{1/4}$

'Critical Gradient' transport behavior is suggested in first-principles 3-D Electromagnetic Fluid Diffusion turbulence simulations†

Turbulence character & transport level determined primarily by two dimensionless parameters

Poloidal Beta Gradient $\Box_{MHD} \sim q^2 R \frac{\Box P}{B^2}$

Inverse Collisionality Parameter $\Box_d \sim \frac{1}{q} \left(\frac{\Box_{ei}}{R} \right)^{1/2} \left(\frac{R}{L_n} \right)^{1/4}$

Electron Heat Diffusivity [3]

$\Box_e \sim \frac{10^0 \Box_{MHD}}{10^0}$

'Critical Gradient' transport behavior is suggested in first-principles 3-D Electromagnetic Fluid Diffusion turbulence simulations†

Turbulence character & transport level determined primarily by two dimensionless parameters

Poloidal Beta Gradient \[\mathcal{B}_{MHD} \sim q^2 R \frac{P}{B^2} \]

Inverse Collisionality Parameter \[\mathcal{D}_d \sim \frac{1}{q} \left(\frac{\mathcal{D}_{el}}{R} \right)^{1/2} \left(\frac{R}{L_n} \right)^{1/4} \]

Electron Heat Diffusivity [3]

edge plasma state restricted to this band

"critical gradient"

Turbulence character & transport level determined primarily by two dimensionless parameters:

Poloidal Beta Gradient
\[\Box_{MHD} \sim q^2 R \frac{P}{B^2} \]

Inverse Collisionality Parameter
\[\Box_d \sim \frac{1}{q} \left(\frac{\Box_{el}}{R} \right)^{1/2} \left(\frac{R}{L_n} \right)^{1/4} \]

Phase Space of EMFDT

- Increasing collisionality transport depends on location in \((\Box_{MHD}, \Box_d)\) 'phase-space'.

[3] B. Scott
Results from 2000 campaign:†
Plasma states near separatrix are indeed found to occupy a well-defined region in the phase space of EMFDT

Discharges with different machine parameters: $B_T, I_p, \overline{n_e}$

Low-power Ohmic L-mode discharges
Density: $0.14 < \frac{n}{n_G} < 0.53$
Lower single-null
Forward I_p, B_T

†Nuclear Fusion 45 (2005) 1658.
Results from 2000 campaign:†
Plasma states near separatrix are indeed found to occupy a well-defined region in the phase space of EMFDT

Discharges with different machine parameters: \(B_T, I_p, \bar{n}_e \)

...occupy in a similar band in \(B_{MHD}, \bar{d} \) space

Low-power Ohmic L-mode discharges
Density: \(0.14 < n/n_G < 0.53 \)
Lower single-null
Forward \(I_p, B_T \)

A region of high \(B_{MHD} \) at high density is inaccessible, owing to an explosive growth of cross-field transport

\[\bar{d} \sim \frac{1}{q} \frac{n_e}{q R} \frac{1}{2} \frac{R}{L_n} \]

\[\bar{n}_e \sim \frac{1}{q} \frac{n_e}{q R} \frac{1}{4} \frac{R}{L_n} \]

†Nuclear Fusion 45 (2005) 1658.
Results from 2000 campaign:†
Plasma states near separatrix are indeed found to occupy a well-defined region in the phase space of EMFDT

Discharges with different machine parameters: B_T, I_p, \bar{n}_e

...occupy in a similar band in \square_{MHD}, \square_d space

Low-power Ohmic L-mode discharges
Density: $0.14 < n/n_G < 0.53$
Lower single-null
Forward I_p, B_T

Ohmic H-modes evolve from L-modes at the low collisionality boundary, increasing in \square_{MHD}

†Nuclear Fusion 45 (2005) 1658.
Pressure gradients near the separatrix appear to clamp at similar values of \(q_{95} \) when normalized collisionality is held fixed.

Look at pressure profile data from discharges with \(d \sim 0.35 \), 2 mm from separatrix.
Pressure gradients near the separatrix appear to clamp at similar values of q_{95} when normalized collisionality is held fixed.

Look at pressure profile data from discharges with $q_d \sim 0.35$, 2 mm from separatrix.

I_P Scan:
Pressure gradients scale roughly as I_P^2 => similar $I_{P, MHD}$.
Pressure gradients near the separatrix appear to clamp at similar values of q_{95} when normalized collisionality is held fixed.

Look at pressure profile data from discharges with $d_d \sim 0.35$, 2 mm from separatrix.

I_p Scan:
Pressure gradients scale roughly as I_p^2 => similar MHD

B_T Scan:
No sensitivity to toroidal field

$=>$ Pressure gradient near separatrix set by a 'critical poloidal beta gradient'
Coupling between flows and critical gradient?
Is there any evidence that edge plasma flows affect the 'critical gradient' (\(\nabla_{MHD} \)) seen near the separatrix?

New experiments (2005 & 2006)

Extended range of \(I_p, B_T \)

Density scans: 0.1 < \(n/n_G < 0.5 \)
with lower currents (0.4 MA)
and fields (4, 3.2=>2.7 tesla)

Improved scanning probe diagnostics
New experiments (2005 & 2006)

Is there any evidence that edge plasma flows affect the 'critical gradient' \(q_{95} \) seen near the separatrix?

Extended range of \(I_p, B_T \)

- Density scans: \(0.1 < n/n_G < 0.5 \)
- with lower currents (0.4 MA)
- and fields (4, 3.2=>2.7 tesla)

Lower vs upper-null topologies

Improved scanning probe diagnostics
Is there any evidence that edge plasma flows affect the 'critical gradient' \(\nabla_{MHD} \) seen near the separatrix?

New experiments (2005 & 2006)

Extended range of \(I_p, B_T \)

Density scans: \(0.1 < n/n_G < 0.5 \) with lower currents (0.4 MA) and fields (4, 3.2=>2.7 tesla)

Improved scanning probe diagnostics
Is there any evidence that edge plasma flows affect the 'critical gradient' \((\nabla_{MHD})\) seen near the separatrix?

New experiments (2005 & 2006)

Extended range of \(I_p, B_T\)

![Graph showing extended range of \(I_p\) and \(B_T\) with different \(q_{95}\) values: \(q_{95} = 6.5\), \(q_{95} = 5\), and \(q_{95} = 3.5\).]

Density scans: \(0.1 < n/n_G < 0.5\) with lower currents (0.4 MA) and fields (4, 3.2\(\rightarrow\)2.7 tesla)

Improved scanning probe diagnostics

Lower vs upper-null topologies

SOL flows change dramatically with X-point location

What is influence on SOL 'phase-space'?

=> Run matched discharges with upper and lower null
New Results (2005 & 2006) -
Pressure gradients near sep. consistently scale as I_p^2

... but value depends on lower / upper X-point topology
New Results (2005 & 2006) - Alcator C-Mod

Pressure gradients near sep. consistently scale as I_p^2

... but value depends on lower / upper X-point topology

Edge plasma states again align in EMFDT phase-space, but in two bands

Lower null achieves higher values of \Box_{MHD} compared to upper null at high collisionality
Plasma flows in the SOL are dramatically different in Lower vs Upper null topologies... perhaps affecting the attainable values of \square_{MHD}.

- Plasma flows from low to high-field side (ballooning-like transport drive)
Plasma flows in the SOL are dramatically different in Lower vs Upper null topologies

... perhaps affecting the attainable values of \mathcal{M}_{MHD}

- Plasma flows from low to high-field side (ballooning-like transport drive)
- Low-field side flows near sep. are affected (~toroidal rotation)
Plasma flows in the SOL are dramatically different in Lower vs Upper null topologies

... perhaps affecting the attainable values of Ω_{MHD}

- Plasma flows from low to high-field side (ballooning-like transport drive)

- Low-field side flows near sep. are affected (~toroidal rotation)

- Highest Ω_{MHD} is achieved when flow is positive (co-current) on low-field side
 => favors lower null topology

(Note: lower null also has lowest L-H threshold power)
Summary

Key plasma phenomena in edge/pedestal region

- Strong 'transport-driven' plasma flows exist just outside the LCFS
 Ballooning-like transport drive, x-point (and limiter) dependent flow pattern, a flow boundary condition for the confined plasma

- Plasma near the separatrix exhibits a 'critical gradient' \((\theta_{MHD}) \) behavior
 Accessible L-mode edge states map to a \((\theta_{MHD}, \theta_d) \) 'phase space'
 Mapping is invariant of machine parameters for fixed magnetic topology:
 \(0.4 < I_p < 1 \text{ MA}, \ 2.7 < B_T < 6 \text{T}, \ 0.1 < \frac{n_e}{n_G} < 0.5 \)
 Broadly consistent with behavior in EMFDT simulations

- **Lower null** topology leads to higher \(\theta_{MHD} \) than **Upper null**
 when equilibrium plasma flows near the separatrix are different
 Co-current plasma flows in the SOL are associated with higher \(\theta_{MHD} \)
 => Flow is another phase space parameter (\(\theta_{MHD}, \theta_d, M,... \))